Total No. of printed pages = 4				
CE 171302				
Roll No. of candidate BINA CHOWDHURY CENTRAL LIBRAR (GIMT & GIPS) Azara, Hatkhowapara, Guwahati -781017				
2019				
B.Tech. 3rd Semester End-Term Examination				
Civil				
ADVANCED SOLID MECHANICS				
(New Regulation)				
(w.e.f. 2017 – 2018)				
Full Marks – 70 Time – Three hours				
The figures in the margin indicate full marks for the questions.				
Answer Question No. 1 and any four from the rest.				
1. Fill in the blanks : $(10 \times 1 = 10)$				
(a) Principal plane is a plane on which shear stress is ———				
(b) A body is subjected to a direct tensile stress (σ)				

in one plane. The shear stress is maximum at a

section inclined at — to the normal

When a beam is subjected to a bending

proportional to the distance from the neutral

moment, the stress in a layer is -

of section.

axis.

(c)

[Turn over

- (e) The maximum deflection of a simply supported beam loaded with uniformly distributed load of w per unit length is ———
- (f) The shear stress at the outermost fibres of a circular shaft under torsion is —
- (g) Torque required to produce a twist of one radian per unit length of a shaft is called
- (h) Polar modulus for a solid shaft of diameter D is
- (i) The relation between equivalent length (L) and actual length (l) of a column for one end fixed and the other end hinged is ———

2. Answer the following:

- (a) A point in a strained element consists of normal stresses of 200 N/mm² (tensile) and 100 N/mm² (tensile) on two mutually perpendicular planes, together with a shear stress across these planes of 50 N/mm². With the help of Mohr's circle, determine the magnitude and direction of the resultant stress on an oblique plane making an angle 30° with the plane of 200 N/mm² tensile stress. Find also the normal and tangential stress on this plane.
- (b) Explain 'pure bending' in case of a beam with an example. (5)

we 14:30	CIMT 8		LIBRARY
	(GIMT 8	(GIPS)	

- 3. Answer the following: Azara, Hatkhowapara,
 - (a) A 1.5 m long circular column of 50 mm diameter had one end fixed and other end free. Taking a factor of safety = 3, calculate the safe load using
 - (i) Rankine's formula taking $f_c = 560 \text{ N/mm}^2$ and Rankine's constant = 1/1600
 - (ii) Euler's formula taking $E = 1.2 \times 10^5 \text{ N/mm}^2. \tag{10}$
 - (b) Derive the expression for maximum torque transmitted by a circular solid shaft. (5)
- 4. Answer the following:
 - (a) A hollow circular shaft of diameter ratio 3/8 (internal to external) is to transmit 375 kW power at 100 rpm. The maximum torque being 20% greater than the mean. The shear stress should not exceed 60 N/mm² and twist in a length of 4 m not to exceed 2°. Calculate the external and internal diameters. Assume modulus of rigidity as 0.85×10^5 N/mm². (10)
 - (b) What do you mean by Section Modulus? Derive an expression for Section Modulus for a rectangular section. (5)
- 5. Answer the following:
 - (a) What do you mean by the term neutral axis? Prove the relationship $\frac{M}{I} = \frac{E}{R} = \frac{f}{y}$ for simple bending. (10)
 - (b) A rectangular beam 100 mm wide and 150 mm deep is simply supported over a span of 4 m. If shear force at a section of the beam is 4,500 N, find the shear stress at a distance of 25 mm above the N.A.

- 6. Answer the following:
 - (a) A simply supported beam of length 4 m carries a point load of 3 kN at a distance of 1m from each end. If $E = 2 \times 10^5 \text{ N/mm}^2$ and $I = 10^8 \text{ mm}^4$ for the beam, then using conjugate beam method determine:
 - (i) slope at each and under each load
 - (ii) deflection under each load and at the centre. (10)
 - (b) Find the expression for the slope and deflection of a cantilever of length L which carries uniformly distributed load w/unit length over the entire length by Moment Area method. (5)
- 7. Answer the following:
 - (a) For the section shown in Fig.1 determine the moment of inertia about its
 - (i) centroid along (x, y) axis
 - (ii) new axis which is turned through an angle of 30° anticlockwise to the old axis.

 (10)

Fig.1

(b) Determine the principal moments of inertia about the centroid for the above case. (5)