Total No. of printed pages = 4

03/01/20

MA 131302

Roll No. of candidate

BINA CHOWDHURY CENTRAL LIBRARY Azara, Hatkhowapara, Guwahati -781017 2019

B.Tech. 3rd Semester End-Term Examination Computer Science DISCRETE MATHEMATICS

(New Regulation)

Full Marks - 70

Time - Three hours

Answer Question No. 1 and any four from the rest.

Choose the correct answer:

 $(10 \times 1 = 10)$

- If $A = {\phi, {\phi}}$, then the power set of A is
 - (a) A

- $\{\phi, \{\phi\}, A\}$
- (c) $\{\phi, \{\phi\}, \{\{\phi\}\}, A\}$ (d) None of these
- The function $f: Q \to Q$ defined by f(x) = 3x + 5, (ii) $x \in Q$ is
 - (a) not one-to-one
 - (b) not onto
 - (c) one-to-one and onto
 - (d) none of these
- (iii) A group (G, *) is abelian group if for all $a, b \in G$, the operation * satisfies
 - (a) a * b = b * a
- (b) a * b = e
- (c) b*a = e
- (d) None of these

[Turn over

(iv)	A b	inary relation \leq on a non-empty set A is ed a partial order on A if the relation is	1000
		Reflexive but not symmetric	
	(b)	Reflexive but not anti-symmetric	
	(c)	Reflexive but not transitive	
. 5	(d)	Reflexive, anti-symmetric and transitive	

- (v) The function $f(x) = e^{2x}$ generates the sequence
 - (a) $1, \frac{2}{1}, \frac{4}{2}, \frac{8}{3}, \dots$
 - (b) $1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \dots$
 - (c) $1, 1, \frac{1}{2}, \frac{1}{4}, \dots$
 - (d) $\frac{1}{2}, \frac{1}{4}, \frac{1}{6}, \dots$
- (vi) The gcd of 723 and 45 is
 - (a) 2

(b) 4

(c) 3

- (d) 5
- (vii) If "p: He is intelligent" and "q: He is a player", then he is intelligent is
 - (a) $(p \land q) \rightarrow p$
 - (b) $(\sim p \land q) \lor \sim q$
 - (c) $(p \lor (\sim q)) \to p$
 - (d) $p \rightarrow q$
- (viii) If $f: R \to R$ and f(x) = 3x 7, then $f^{-1}(14)$ is equal to
 - (a) 5

(b) 35

(c) 14

(d) 7

	(ix)	The subset of a countable set is					
		(a) uncountable	(b)	finite			
		(c) countable	(d)	none of theses			
	(x) The generators of the cyclic group (G, X) ;						
	$G = \{1, -1, i, -i\}$ s are						
		(a) 1	(b)	1 and -1			
		(c) 1 and i	(d)	i and $-i$			
2.	(a)	For any sets A and B prove that					
		$A = (B^C \cap A) \cup (A \cap B)$		(5)			
	(b)	Let Q be the set of	rotat	ional numbers and			
		$f: Q \to Q$ be a f	unctio	on defined by			
	$f(x) = 3x + 5$, $x \in Q$. Show that f is or						
		one-to-one.		(5)			
	(c)	Prove that $1 + 2 + 2$	$2^r + \dots$	+ $2^n = 2^{n+1} - 1$ by			
		mathematical inductio	n.	(5)			
3.	(a)	Draw the Hasse diag	gram	of the poset (S, \leq) ,			
		where $S = \{2, 3, 6, 12, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2$	24, 36	and $x \le y$ if $sx \mid y$			
		(x divides y).		(5)			
	(b)	Prove that a non-emp	ty sul	oset H of a group G			
		is a subgroup of					
		$a, b \in H \Rightarrow ab^{-1} \in H$ for	r all a	$a, b \in H. \tag{5}$			
	(c)	Find the remainder	when				
MA	19194	divided by 4.		(5)			
MA 131302 BINA CHOWDHURY CENTRAL LIBRARY [Turn over							

(GIMT & GIPS)
Azara, Hatkhowapara,
Guwahati -781017

- 4. (a) Prove that a countable union of countable sets is countable. (5)
 - (b) Prove that the relation $R = \{(x, y) : x y = \text{an even integer for all } x, y \in I\} \text{ is an equivalence relation.}$ (5)
 - (c) Show that $(\neg q \land (p \rightarrow q)) \rightarrow \neg p$ is a tautology. (5)
- 5. (a) Solve the recurrence relation $a_n = 6a_{n-1} = 9a_{n-2}$ with initial conditions $a_0 = 1$ and $a_1 = 6$. (5)
 - (b) Obtain principal disjunctive notional form of $q \lor (p \lor \neg q)$. (5)
 - (c) Test the validity of the argument. If it rains, Tapas will be sick. If did not rain, therefore Tapass is not sick. (5)
- 6. (a) Symbolize the following using quantifiers:
 - (i) Everybody is not rich
 - (ii) Every natural number is either even or odd. (4)
 - (b) How many bit strings of length seven either begins with zeros or end with three ones? (4)
 - (c) Using generating functions solve the recurrence relation

$$a_n = 3a_{n-1} + 2 \text{ for all } n \ge 1, \ a_0 = 2.$$
 (7)