CE	181	505							
Rol	l No. (of can	didate B.T	rech. 5 th S GEOTEC	emester :	End-To	HOWEHORY CER RUMT & THE APERC Hather Gravatical Transporters From Examina NEERING —	ntion	
Ful	l Mar	ks – 7	0	(Hew It	eguiatio	ii & ive	w Syllabus)	Time - Three hours	
							l marks for th		
		4	Answer	Question	one and ar	ny six q	uestions from	the Rest.	
1.	Answer the following question				ions:			$(10 \times 1 = 10)$	
	(i)	A so	A-line" when plotted on s:						
		(a)	CL			(b)	CI		
		(c)	CH		100	(d)	MI		
	(îî)	The same of						ates are 0.8 and 0.3. It density (%) is :	
		(a)	40			(b)	50		
		(c)	60			(d)	70		
	(iii)		A sand deposit has a porosity of 0.25 and its specific gravity is 2.6. The critical hydraulic gradient for the sand deposit is:						
		(a)	0.78			(b)	1.2		
		(c)	1.95			(d)	2.7		
								PT	

Total No. of printed pages = 6

î	(iv)		The change in the vertical stress in the soil mass estimated by Boussinesq's equation when Poisson's ratio of soil changes from 0.2 to 0.4 will be:				
		(a)	no change				
		(b)	reduction by 10%				
		(c)	reduction by 20%				
		(d)	reduction by 40%				
	(v)	Wh	at is the silt size range?				
		(a)	0.01 – 0.075 mm				
		(b)	0.002 - 0.001 mm				
		(c)	0.002 - 0.075 mm				
		(d)	0.01 - 0.100 mm				
	(vi)	Ifse	oil is dried beyond its shrinkage limit, it will show :				
		(a)	Low volume change				
		(b)	Moderate volume change				
		(c)	Large volume change				
		(d)	No volume change				
	(vii)	At v	vater content greater than the OMC, the dry density decreases because:				
		(a)	Repulsion between soil and water particles				
		(b)	Water replaces soil solids				
		(c)	Soil reacts with water to give porous material				
		(d)	Water has hydrophilic character				
	(viii)	The	biggest size of clay particle is:				
		(a)	0.0002 mm				
		(b)	0.002 mm				
		(c)	0.02 mm				
		(d)	0.075 mm				
CE	18150	5	2				

(ix)) During seepage through a s	soil, the direction of sagness	
	(a) Parallel to equipotenti	ial lines	s always :
	(b) Perpendicular to stream		
100	(c) Perpendicular to equip	otential lines	CENTRAL LIBRARY
	(d) None of the above	23.90	a SIPS)/E hr/Hapara. tr/No.017
(x)	Which of the following med soils?	chanisms are predominant i	n the cohesionless
	(a) Cohesion	(b) Friction	
	(c) Both (a) and (b)	(d) Adhesion	
(b) V	For a given sandy soil, e _{max} = the soil is compacted to a metontent of 12%. Determine the What is the characteristic eninerals kaolinite, illite and metystal structure of these minerals	relative density of compaction	m ³ at a moisture on. (5)
3. (a) T	he moisture content of a soil 5.7 kN/m ³ . Assuming that the	sample is 18.4%, and its dr specific gravity of solids is 2.	(5) y unit weight is 65. (2+3)
(ii)		lry unit woight to	he soil can be
(b) The	e coefficient of uniformity and termine the ratio D_{30}/D_{10} .	curvature of a soil are 9 and	1 respectively.
ALCO AND A STATE OF THE PARTY O			(3)
15 b	a liquid limit test using Casolows was 150% and that at 33 soil?	sagrande apparatus, the wa 5 blows was 60%. What is the	ter content at liquid limit of
			(2)
CE 181505	3		
			[Turn over

- 4. The results of a standard Proctor test are given in the following table: (5+3+2)
 - (a) Find the compaction curve showing the Maximum Dry Density (MDD) and the optimum moisture content of compaction.

(b) Plot the zero-air void line.

BINA CHOWDHURY CENTRAL LIBRARY

FINAT & GIPS), F

Hathir wapera,

(c) Determine the degree of saturation at the MDD.

Volume of Proctor mold (cm³)	Mass of wet soil in the mold (kg)	Moisture content (%)
1000	1.68	9.9
1000	1.71	10,6
1000	1.77	12.1
1000	1.83	13.8
1000	1.86	15.1
1000	1.88	17.4
1000	1.87 ⊋	19.4
1000	1.85	21.2

- (a) A sample of cohesionless soil in a direct shear test fails under a shear stress of 160 kN/m² when the normal stress is 130 kN/m². (3+3)
 - (i) Find the angle of shearing resistance of the soil.
 - (ii) For a normal stress of 100 kN/m², what shear stress is required to cause failure in the sample?
 - (b) What is the radius of Mohr circle for unconfined compression test results?

 (2)
 - (c) A clay soil sample was tested in the triaxial apparatus in consolidated drained condition at a cell pressure (σ₃) of 100 kN/m². What will be the axial pressure (σ₁) and pore water pressure at deviator stress of 50 kN/m²? (1 + 1)

- 6. A cylindrical specimen of dry sand was tested in a triaxial test. Failure occured under a cell pressure of 150 kPa and a deviator stress of 450 kPa. Draw the Mohr's circle and determine: (4+2+4)
 - (a) Angle of shearing resistance.
 - (b) Normal and shear stresses on the failure plane.
- 7. (a) In a Newmark's chart of stress distribution, there are 10 concentric circles and 10 radial lines. What is the influence factor for the chart? (2)
 - (b) A rectangular footing, 4 m × 2 m in size, has to carry a uniformly distributed load of 110 kN/m². Determine the vertical stress intensity at a depth 5 m below the base of the footing.
 (5)
 - (c) Differentiate between pore water pressure and effective stress. (3)
- 8. (a) A constant head permeability test is carried out on a cylindrical sand sample having a diameter of 8 cm and height of 20 cm. The quantity of water discharged through the sample in 15 min, under a constant head of 1.0 m, is 1.2 kg. Determine the coefficient of permeability of the soil. (6)
 - (b) What is a flow net? What are the uses of a flow net? (2+2)
- (a) A 5 m thick clay stratum lies between two previous strata. The properties of the clay are .

Liquid limit = 50%

BINA CHOWDHURY CENTRAL LIBRARY

Coefficient of permeability = 2.8×10^{-7} cm/sec

Void ratio = 0.9

The initial effective overburden pressure at the middle of the clay stratum is 25 kPa, which is likely to increase to 50 kPa due to the construction of a new building. Determine the consolidation settlement of the building.

- (b) Differentiate between the laboratory consolidation curve and field consolidation relationship. (3)
- (c) In a consolidation test, the void ratio of the soil decreased from 0.7 to 0.6 when the load was changed from 10 kN/m² to 100 kN/m². What is the compression index of the soil?

 | WARDHURY CENTRAL LIBRAR | (2) | (3) | (3) | (3) | (3) | (4