Total No. of printed pages = 4

FIELD	1.03	WA	-
CE	181	DU	1

BINA CHOWDHURY CENTRAL LIBRARY

Roll No. of candidate

Azare Halki wapara, Grwahab 78 017

17/2/22 2021

B. Tech. 5th Semester End-Term Examination

CE

OPEN CHANNEL FLOW AND IRRIGATION ENGINEERING

(New Regulation & New Syllabus)

Full Marks - 70

Time - Three hours

The figures in the margin indicate full marks for the questions.

Answer Question No.1 and any five from the rest.

1. Choose the correct answer

 $(10 \times 1 = 10)$

 (i) If B is the base period in days, D is the duty in hectares/cumec and Δ is the delta of the crop in m, the relation between them is given by

(a)
$$D = 8.64 B \Delta$$

(b)
$$\Delta = 8.64BD$$

(c)
$$\Delta = \frac{0.864B}{D}$$

(d)
$$\Delta = \frac{8.64B}{D}$$

- (ii) Net irrigation requirement of a crop is given by
 - (a) Consumptive use + field losses
 - (b) Consumptive use + conveyance losses
 - (c) Consumptive use + field losses + conveyance losses
 - (d) Consumptive use effective rainfall
- (iii) The divide wall in a diversion headwork is provided
 - (a) To increase the head of flow through the head regulator
 - (b) To prevent the formation of vertices in front of head regulator
 - (c) To control the silt entry into channel
 - (d) To reduce the uplift pressure on the apron

(iv)		If Q is the discharge, the wetted perimeter of a regime channel according to Lacey's theory is given by				
	(a)	$P = 47.5\sqrt{Q}$	(b)	$P = 475\sqrt{Q}$		
	(c)	$\mathbf{P} = 0.475\sqrt{Q}$	(d)	$P = 4.75\sqrt{Q}$		
(v)		The difference in elevations of top of bank and full supply level of a canal is				
	(a)	Berm	(b)	Critical depth		
	(c)	Free board	(d)	Surcharge depth		
(vi)	Tota	al Energy Line (T.E.L.) rep	presents t			
	(a) Pressure head and kinetic head					
	(b)	Datum head and kinetic	head	BILLY CINC AND STATE OF THE STA		
	(c) Pressure head and datum head		BINA COLUMN			
	(d)	Pressure head, kinetic he	ead and d	atum head		
(vii)	Spe	cific energy of a flowing flo	it weight is			
	(a)	$P/W + v^2/g$	(b)	P/W+ v/2g		
	(c)	$v^2/2g + h$	(d)	$P/W + v^2/2g + h$		
(viii) For	medium silt whose avera	ge grain	size is 0.16 mm, Lacey's silt factor is		
	like	ly to be				
	(a)	0.35	(b)	0.70		
	(c)	1.35	(d)	1.70		
(ix)	The two depth corresponding to same specific energy is called					
	(a)	Critical depth	(b)	Alternate depth		
	(c)	Normal depth	(d)	Conjugate depth		
(x)	Which of the following is back water profile					
	(a)	M_1 and M_3 profile	(b)	S ₁ and S ₃ profile		
	(c)	C_1 and C_3 profile	(d)	All the above		

$$E_c = (2/3) h_c$$

where, h = Critical depth

E_c = Specific energy at critical flow.

Also show that the critical depth 'hc' is related to alternate depth h1 and h2 in a rectangular channel by the equation

$$\mathbf{h_c}^3 = \frac{2\mathbf{h_1}^2\mathbf{h_2}^2}{\mathbf{h_1} + \mathbf{h_2}} \ h_3^{\text{BINA CHOWDIC RV CHITE ALLIBRATION AND AND AND ADDRESS AND ADDRESS$$

- (b) A trapezoidal channel 10.0 m wide and having a side slope of 1.5H: 1V is laid on a slope of 0.0020. The roughness coefficient n=0.015. Find the normal depth for a discharge of 42 m³/sec through the channel. (6)
- 3. (a) Classify Hydraulic Jump based on upstream Froud's number. (4)
 - (b) A hydraulic jump occurs in a rectangular channel of width 8.0 m. The depth of flow before and after the jump are 1.10 m and 3.60 m respectively. The flow rate is 80 m³/sec. Calculate the critical depth, loss of energy, length of jump and efficiency of jump.
- (a) State the assumptions required for deducing the dynamic equation for steady gradually varied flow in open channel. Deduce the dynamic equation of gradually varied flow.
 (6)
 - (b) A rectangular channel 6.0 m wide discharges at a depth of 3.0 m with bed slope 1 in 5000 and Manning's n = 0.015. A small weir placed across the channel raises the depth to 6.50 m just upstream of the weir. How far upstream of the weir, depth becomes 4.0 m? Solve the problem by single step.
- (a) Assuming width of channel as 'b' and depth of flow as 'y', find the conditions for most economic trapezoidal channel section.
 - (b) Design an irrigation canal through an alluvial soil carrying a discharge of 40 m³/sec by Lacey's silt theory. Assume mean dia. of bed material as 0.34mm side slope 1.5H :1V. Provide necessary free board. (8)

- (a) What is meant by "Duty' and "Delta" of canal water? Derive a relationship a relationship between duty and delta for a given base period.
 - (b) Explain with the help of a neat sketch, the various component parts along with their functions of a diversion headwork.
 (6)
- (a) Describe various types of cross-drainage works with the help of necessary sketches. Write a note on selection of suitable type of cross-drainage works.

(6)

(b) Design a tube well for the following data

(6)

- (i) Yield required = 0.35 cumec
- (ii) Thickness of confined aquifer = 55 m
- (iii) Radius of circle of influence = 320 m
- (iv) Permeability coefficient = 60 m/day
- (v) Drawdown = 6 m.