Total No. of printed pages = 7

18/12/18

MA 131101

Roll No. of candidate

B.Tech. 1st Semester End-Term Examination, 2018

MATHEMATICS - I

(Old Regulation)

Full Marks - 100

Time - Three hours

The figures in the margin indicate full marks for the questions.

Answer question No. 1 and any Six from the rest.

1. Answer the following: (MCQ)

 $(10 \times 1 = 10)$

- (i) The nth derivative of e^{mx} is ————
 - (a) 0
 - (b) me^{mx}
 - (c) $m^n e^{mx}$
 - (d) None of the above

(ii) If $f(x, y) = e^{xy}$ then $f_{xy} = \underline{\hspace{1cm}}$.

- (a) $(1+xy)e^{xy}$
 - (b) $(1-xy)e^{xy}$
 - (c) yexy
 - (d) xe^{xy}

(iii) If $u \frac{x^2 + y^2}{x^2 - y^2}$ then $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \underline{\hspace{1cm}}$

- (a) 0
- (b) 1
- (c) 2
- (d) None of the above

(iv) $\int_{0}^{\pi/2} \sin^7 x \, dx = \underline{\hspace{1cm}}.$

- (a) $\frac{8}{15}$
- (b) $\frac{16}{35}$
- (c) $\frac{16}{35}\pi$
- (d) $\frac{8}{35}\pi$

- (v) The area bounded by the curve $r = f(\theta)$ and the radii vectors $\theta = \alpha$ and $\theta = \beta$ is
 - (a) $\int_{\alpha}^{\beta} r d\theta$
 - (b) $\int_{\alpha}^{\beta} r^2 d\theta$
 - (c) $\frac{1}{2}\int_{\alpha}^{\beta}r^2d\theta$
 - (d) $\frac{1}{2}\int_{\alpha}^{\beta}r\,d\theta$
- (vi) The volume of the solid generated by the revolution about x axis of the area bounded by the curves $y_1 = f(x)$ and $y_2 = g(x)$ the ordinates x = a and x = b is
 - (a) $\int_{a}^{b} (y_1 y_2) dx$
 - (b) $\int_{a}^{b} (y_1^2 y_2^2) dx$
 - (c) $\int_{a}^{b} \pi (y_1^2 y_2^2) dx$
 - (d) $\frac{1}{2} \int_{a}^{b} \pi (y_1^2 y_2^2) dx$

(vii) The degree of the differential equation $\left(\frac{dy}{dx}\right)^3 = \sqrt{\left(\frac{d^2y}{dx^2} + 1\right)} \text{ is }$

- (a) 1
- (b) 2
- (c) 4
- (d) None of the above

(viii) If $y = \log(x+1)$, then the value of $y_2(0)$ is

- (a) 0
- (b) 1
- (c) -1
- (d) None of the above
- (ix) The differential equation Mdx + Ndy = 0 is said to be exact if
 - (a) $\frac{\partial M}{\partial x} = \frac{\partial N}{\partial y}$
 - (b) $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$
 - (c) $\frac{\partial M}{\partial y} = -\frac{\partial N}{\partial x}$
 - (d) $\frac{\partial^2 M}{\partial x^2} = \frac{\partial^2 N}{\partial y^2}$

- (x) An integrating factor for the differential equation xdy ydx = 0 is
 - (a) y
 - (b) $\frac{1}{x}$
 - (c) $\frac{1}{x^2}$
 - (d) xy
- 2. (a) Find y_n if $y = \cos 2x$. (2)
 - (b) Expand e^x in powers of x. (3)
 - (c) If $y = \tan^{-1} x$ prove that $(1+x^2) y_{n+1} + 2nxy_n + n(n-1) y_{n-1} = 0$. (5)
 - (d) If $u = \log(x^3 + y^3 + z^3 3xyz)$, prove that (5)

$$\left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z}\right)^2 u = \frac{9}{(x+y+z)^2}.$$

- 3. (a) Find the value of $\int_{0}^{\pi/2} \sin^6 x \cos^8 x dx$. (5)
 - (b) If $I_{n=} \int_{0}^{\frac{\pi}{4}} \tan^{n} x \, dx$, prove that $I_{n} + I_{n-2} = \frac{1}{n-1}$. (5)
 - (c) Find the volume of the solid formed by the revolution of the cardiod $r = a(1 + \cos \theta)$ about the initial line. (5)

- 4. (a) Evaluate $\iiint (x+y+z+1)^4 dx dy dz \text{ over the}$ tetrahedron bounded by x=0, y=0, z=0 and x+y+z=1. (5)
 - (b) Show that $\int_{0}^{1} \frac{x^2}{\sqrt{1-x^4}} dx = \frac{1}{4} \beta \left(\frac{3}{4}, \frac{1}{2} \right)$. (5)
 - (c) By applying differentiation under integral sign, evaluate $\int_{0}^{1} \frac{x^{\alpha} 1}{\log x} dx$. (5)
- 5. (a) Solve $(x^2 y^2) dx + 2xy dy = 0$. (5)
 - (b) Find the complete solution of $\frac{d^2y}{dx^2} 5\frac{dy}{dx} + 6y = e^x \cos 2x$. (5)
 - (c) Find the integrating factor of the following differential equation and solve it

$$(x^{2}y)dx - (x^{3} + y^{3}) dy = 0. (5)$$

- 6. (a) The period T of a simple pendulum is $T = 2\pi \sqrt{\frac{l}{g}}$. Find the maximum error in T due to possible errors upto 1% in l and 2.5% in g.(5)
 - (b) Write down the conditions for a function to be maximum or minimum at a point. Show that the function $f(x, y) = x^3 + y^3 63(x + y) + 12xy$ is minimum at (-7, 7) and minimum at (3, 3). (10)

- 7. (a) Evaluate $\iint_R xy \, dx \, dy$ where R is the quadrant of the circle $x^2 + y^2 = a^2$, where $x, y \ge 0$. (5)
 - (b) Sketch the polar curve $x^{2/3} + y^{2/3} = a^{2/3}$. Hence find the surface area of the solid generated by revolving the curve about the initial line. (10)
- 8. (a) Solve the following differential equation by method of variation of parameters

$$(D^2 + 4) y = \tan 2x. (6)$$

- (b) Solve $(D^2 + D^3 3D^2 5D 2) y = 3xe^{-x}$. (9)
- 9. (a) If $x = r \sin \theta \cos \phi$, $y = r \sin \theta \sin \phi$ and $z = r \cos \theta$ then prove that $\frac{\partial(x, y, z)}{\partial(r, \theta, \phi)} = r^2 \sin \theta$. (6)
 - (b) If $u = x\phi(y/x) + \Psi(y/x)$, then show that (9)
 - (i) $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = x \phi \left(\frac{y}{x}\right)$.
 - (ii) $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = 0.$