Total No.	of printed pages = 4
PH 181101	
Roll No. o	of candidate
	BINA CHOWDHURY CENTRAL LIBRARY (GIMT & GIPS). Azara, Hatkhowapara, Guwahati -781017
В.Те	ch. 1st Semester End-Term Examination
	PHYSICS - 101
(New Regulation) (w.e.f. 2017-2018)	
(New Syllabus) (w.e.f. 2018-2019)	
(GROUP-B)	
Full Marks - 70 Time - Three hours	
Th	e figures in the margin indicate full marks for the questions.
Ans	wer Question No.1 and any four from the rest.
	$(10 \times 1 = 10)$
1. (i)	The Curl of a Physical quantity highlights its properties.
(ii)	Ampere's Circuital Law is valid for ———————————————————————————————————
(iii)	The condition for Achromatism for two lenses in contact is given by the equation —
(iv)	Multipath time dispersion can be minimized in a ———— optical fibre.

Optical pumping in a LASER is done to achieve

[Turn over

(v)

- (vi) Holography is the phenomenon of creating a dimensional image of an object.
- (vii) Density of states of the valence band, N_v is proportional to ———
- (viii) In silicon, Band splitting takes place for the states and and —
- (x) The magnetic susceptibility χ for diamagnetic materials is————
- 2. (a) State the four Maxwell's equations in differential form and write their physical significances.
 - (b) Draw the (B-H) curve for a ferromagnetic material. What do you mean by retentivity and coercivity of the material?
 - (c) If A be a vector field represented by $\vec{A}(x,y,z) = 3x\hat{i} y^3z^2\hat{j}$. Find $\nabla \cdot \vec{A}$ and $\nabla \times \vec{A}$ at a point (1,-2,-1). (6+5+4=15)
- 3. (a) What is spherical aberration? Describe how spherical aberration can be minimized by using two Plano convex lenses separated by a distance.
 - (b) Draw a neatly labelled diagram to show the experimental set up for formation of Newton's Rings.

- (c) In a Newton's Rings setup, the diameter of the 4th ring was found to be 0.4 an and that of 24th ring was 0.8 cm and radius of curvature of the plano-convex lens is 100 cm. Calculate the wavelength of the light used. (7 + 4 + 4 = 15)
- 4. (a) What are Einstein's coefficients? Derive the expression for the ratio of the coefficients.
 - (b) Write few applications of LASER.
 - (c) Discuss in brief the working of semiconductor laser. (7 + 4 + 4 = 15)
- 5. (a) Discuss in detail the characteristics of step index and graded index optical fibre with suitable diagrams.
 - (b) What do you mean by angle of acceptance and numerical aperture of an optical fibre?
 - (c) The refraction indices of the care and the cladding of an optical fibre are 1.50 and 1.47 respectively. Calculate the acceptance angle and numerical aperture. (7 + 4 + 4 = 15)
- 6. (a) Derive the time dependent Schrodinger's equation.
 - (b) Define Group velocity and Phase velocity in a travelling wave.
 - (c) The uncertainty in time of an excited atom is about 10-8 s. What are the uncertainties in energy and frequency of the radiation?

$$(7+4+4=15)$$

- 7. (a) Write short notes on:
 - (i) LED and
 - (ii) Solar cell.
 - (b) What do you mean by Meissner effect in superconductivity?
 - (c) Calculate the critical current for a superconducting wire of Lead (Pb) having diameter of 1 mm at temperature 4.2°K. Given T_c for Pb = 7.18 °K and $H_c(0)$ = 6.5×10^4 A/m. (8 + 3 + 4 = 15)