Total No. of printed pa	iges = 4
MA 171103	18/1-118
Roll No. of candidate	
	BINA CHOWDHURY CENTRAL LIBRAS (GIMT & GIPS) 2018 Azara, Hatkhowapara, Guwahati -781017
B.Tech. 1st Seme	ester End-Term Examination
ENGINEERI	NG MATHEMATICS — I
(New Regulation & New Syllabus)	
(w	.e.f. 2017-2018)
Full Marks – 70	Time - Three hours
	ne margin indicate full marks the questions.
Answer Question N	No. 1 and any four from the rest.
1. Answer the follow	ing (MCQ/Fill in the blanks): $(10 \times 1 = 10)$
(i) The 5th deriv	ative of $y=x^5$ is
(a) 0	(b) 4!
(c) x	(d) 5!
(ii) The function function of de	$ax^2 + 2hxy + by^2$ is a homogeneous

(b) 1

(d) 3

(a)

(c)

0

2

[Turn over

- (iii) If f(x, y) = 0, then $\frac{dy}{dx} = 0$
 - (a) $\frac{fy}{fx}$ (b) $\frac{fx}{fy}$

 - (c) $-\frac{fy}{fx}$ (d) $-\frac{fx}{fy}$
 - The integrating factor for $\frac{dy}{dx} + py = Q$ is
 - (v) The value of $\int_{0}^{\pi/2} \sin^5 \theta \, d\theta$ is -
 - (vi) The solution of $(y-px)^2 = p^2$ is
 - (a) $y^2 = ax + a^2$
 - (b) $(y-a)^2 = a^2 x^2$
 - (c) $y^2 = a^2 x^2 + a^2$
 - (d) $y = ax \pm a$
 - (vii) Under what condition the equation M(x, y) dx + N(x, y) dy = 0 become exact?
 - (viii) If $u = x f\left(\frac{y}{x}\right)$, then $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} =$

 - (a) $f\left(\frac{y}{x}\right)$ (b) $xf\left(\frac{y}{x}\right)$

 - (c) 0 (d) $f'\left(\frac{y}{x}\right)$

(ix) The value of
$$\frac{3}{2}$$
 is

(a)
$$\sqrt{\pi}$$
 (b) $\frac{1}{2}\sqrt{\pi}$

(c)
$$\frac{3}{2}\sqrt{\pi}$$
 (d) $\frac{3}{4}\sqrt{\pi}$

(x) The volume of the solid generated by revolution about x-axis between x = a and x = b of the curve y = f(x) is

(a)
$$\int_a^b y dx$$
 (b) $\int_a^b y^2 dx$

(c)
$$\pi \int_{a}^{b} y^{2} dx$$
 (d) $\pi \int_{a}^{b} x^{2} dy$

2. (a) If
$$y = e^x x^2$$
, find y_n (3)

(b) Expand
$$e^x$$
 in powers of x . (4)

(c) If
$$y = \sin^{-1} x$$
, prove that (3+5=8)

(i)
$$(1-x^2)y_2 - xy_1 = 0$$

(ii)
$$(1-x^2)y_{n+2}-(2n+1)xy_{n+1}-n^2y_n=0$$
.

3. (a) If u = f(x+at) + g(x-at), show that

$$\frac{\partial^2 u}{\partial t^2} = \alpha^2 \frac{\partial^2 u}{\partial x^2}.$$
 (5)

(b) If $u = x^2 + y^2 + z^2$, show that

$$x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} + z\frac{\partial u}{\partial z} = 2u. \tag{3}$$

(c) Find the maxima and minima of the function $f(x,y) = x^3 + y^3 - 3xy$. (7)

- 4. (a) Obtain a reduction formula for $I_n = \int_0^{\pi/4} \tan^n x \, dx$ and hence prove that $n \left[I_{n+1} + I_{n-1} \right] = 1$ (5+5=10)
 - (b) Evaluate $\int_{0}^{\pi/2} \sin^6 x \cos^8 x \, dx. \tag{5}$
- 5. (a) Prove that $\int_{0}^{\infty} e^{-gx} x^{3/2} dx = \frac{g}{4} \sqrt{\pi}$. (5)
 - (b) Evaluate $\int_{0}^{1} \int_{0}^{x} (x^2 + y^2) dx dy$. (3)
 - (c) Find the volume of the solid generated by revolting the parabola $y^2 = 4ax$ about the x-axis bounded by the section x = a. (7)
- 6. (a) Find an integrating factor of the differential equation $(x^2 + y^2)dx 2xy dy = 0$ and hence solve it. (2+5=7)
 - (b) Solve: $y px = \tan^{-1} p$. (4)
 - (c) Find particular integral (PI) of the equation $(D^2+4)y = \cos 2x$. (4)
- 7. (a) Find the complete solution of $\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + y = e^x$ (5)
 - (b) Solve: $x^2 \frac{d^2 y}{dx^2} 2y = x^3$. (5)
 - (c) Solve: $\frac{dx}{dt} + 2x 3y = 0$ $\frac{dy}{dt} 3x + 2y = 0$ (5)