Total No. of printed pages = 6

PH 171101

24/17/18

Roll No. of candidate

B.Tech. 1st Semester End-Term Examination

ENGINEERING PHYSICS - I

(New Regulation & New Syllabus)

(W.e.f. 2017-2018)

Full Marks - 70

Time - Three hours

The figures in the margin indicate full marks for the questions.

Answer question No. 1 and any four from the rest.

1. Write the correct option for the following questions:

 $(10 \times 1 = 10)$

- (i) The ratio of the lateral strain to the longitudinal strain is termed as
 - (a) Shearing stress
 - (b) Young's modulus
 - (c) Poisson's ratio
 - (d) Bulk modulus

[Turn over

(ii) The relation between the three elastic constants is

(a)
$$\frac{1}{K} + \frac{3}{\eta} = \frac{9}{Y}$$

(b)
$$\frac{12}{K} + \frac{3}{\eta} = \frac{9}{Y}$$

(c)
$$\frac{1}{Y} + \frac{3}{\eta} = \frac{9}{K}$$

(d) None of these

(iii) The walls of a musical concert hall should

- (a) transmit sound
- (b) amplify sound
- (c) absorb sound
- (d) reflect sound

(iv) If 'l', Y and ρ be the thickness Young's modulus and density of the piezoelectric crystal, then the fundamental frequency of vibration of crystal will be

(a)
$$\frac{1}{l}\sqrt{\frac{Y}{\rho}}$$

(b)
$$\frac{1}{2Y}\sqrt{\frac{l}{\rho}}$$

(c)
$$\frac{1}{2\rho}\sqrt{\frac{Y}{l}}$$

(d)
$$\frac{1}{2l}\sqrt{\frac{Y}{\rho}}$$

- (v) Molecules which tend to orient themselves in an external field are called
 - (a) non-polar
 - (b) polar
 - (c) ionic
 - (d) all
- (vi) Expression of internal field (Lorentz field) is expressed as

(a)
$$E_i = E - \frac{3P}{\varepsilon_0}$$

(b)
$$E_i = E + \frac{3P}{\varepsilon_0}$$

(c)
$$E_i = E + \frac{P}{3\varepsilon_0}$$

- (d) None of the above
- (vii) Magnetic induction B and the magnetic field intensity H are related by

(a)
$$B = \mu_0 + H$$

(b)
$$B = \mu_0 H^2$$

(c)
$$H = \mu_0 B$$

(d)
$$B = \mu_0 \mu_r H$$

(viii) The unit of dipole moment per unit volume is

- (a) Coulomb/metre
- (b) Coloumb/metre²
- (c) Coloumb/metre³
- (d) Coulomb

(ix) The group velocity of matter waves is equal to

- (a) particle velocity
- (b) phase velocity
- (c) velocity of light
- (d) wave velocity

(x) In order to understand the behavior of nanomaterials, the laws we depend upon

- (a) Newton's laws of motion
- (b) All classical laws
- (c) Quantum mechanics
- (d) All of these

2. (a) Find the depression of the loaded end of a cantilever.

(b) For volume strain, prove that strain energy per unit volume = $\frac{1}{2}$ x stress x strain. (10 + 5 = 15)

- 3. (a) Explain an experiment to produce ultrasonic waves.
 - (b) Write few applications of ultrasonic waves. (10 + 5 = 15)
- 4. (a) For a dielectric material, prove that, $k = 1 + \frac{\chi}{\varepsilon_0}$, the terms have their usual meanings.
 - (b) Write briefly about dielectric loss.
 - (c) What is the polarization produced in sodium chloride by an electric field of 500 V/m if the relative permittivity of the material is 6? (5+5+5=15)
- 5. (a) What are ferromagnetic materials?
 - (b) Write few differences between paramagnetic and diamagnetic materials.
 - (c) With proper diagram of a hysteresis loop, explain the properties, retentivity and coercivity.
 - (d). What are hard and soft magnetic materials. (2+3+5+5=15)
- 6. (a) Explain de Broglie hypothesis.
 - (b) Find the relation between group velocity and phase velocity.
 - (c) The kinetic energy of an electron is 500 eV. What will be the de Broglie wavelength associated with it? (5+5+5=15)

- 7. (a) What are the properties of nanomaterials?
 - (b) With the help of a potential well, explain quantum confinement.
 - (c) Write few applications of nanomaterials.

(5+5+5=15)