MA 131302 NR

						_
Roll No. of candidate						
		_		-	_	

25/2/

2021 BINA CHOWDHURY CENTRAL LIBRARY Hattin wapara,

B. Tech. 3rd Semester End-Term Examinat

CSE

DISCRETE MATHEMATICS

(New Regulation)

Full Marks - 70

Time - Three hours

The figures in the margin indicate full marks for the questions.

Answer question No. 1 and any four from the rest.

Chose the correct answer :

- $(10 \times 1 = 10)$
- (i) Let R = {(0, 0), (0, 2), (2, 0), (2, 2), (2, 3), (3, 2), (3, 3)} be the relation defined on $X = \{0,1,2,3\}$. Then R is
 - (a) Reflexive but not symmetric
 - (b) Symmetric but not reflexive
 - Transitive but not symmetric (c)
 - (d) Reflexive and symmetric
- (ii) A onto function is also known as
 - (a) Injective function
- (b) Surjective function
- Bijective function
- (d) None of the above
- (iii) The order of the element i of the cyclic group $G = \{1,-1,i,-i\}$ is
 - (a) 1

(b) 2

(c) 3

- (d) 4
- (iv) $p \rightarrow q$ is equivalent to
 - (a) $(\sim p \vee q)$

(b) (p∨ ~ q)

(e) $(\sim p \vee \sim q)$

(d) None of the above

(v)	Th	e generating function of th	e sequenc	e 1 1 1	10
				1507	- 10
	(8)	1+x	(b)	$\frac{1}{1-x}$	
	(c)	$\frac{1}{x-1}$	(d)	None of t	he above
(vi)	Wh	nich of the following pairs	are compar	rable in the	e poset (Z ⁺ ,)
		2.4		4,6	
	(c)	3,5	0.00	4,5	
(vii) If S	and T are two subgroups ogroup?	of a grou	p G, then	which of the following is a
	(a)	$S \cup T$	(b)	$S \cap T$	
	(c)	S-T	(d)	G-S	
(viii) The	number of nonzero zero d	ivisor of th	ne ring Z 3	is
	(a)		(b)		
	(c)	2	(d)	3	
(ix)	The	order of the symmetric gr	oup S, is		
		$\frac{n!}{2}$		n	WNDHURY CENTRAL LIBRAN
	(c)	$\frac{n}{2}$	(d)	n elfvact	MANUAL STATES
(x)	The	order of the permutation	$\begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$ is		
	(a)			3	
	(c)	1	(d)	None of th	ne above
Ansv	wert	he following			
(a)	If A	i, B and C are any three s	sets, prove	that A×	$(B \cap C) = (A \times B) \cap (A \times C).$
					(5)
(b)	Usir	ig mathematical induction	prove tha	t	
	+2	29 22 1 22 1			

$$1^{2} + 3^{2} + 5^{2} + \dots + (2n - 1)^{2} = \frac{1}{3} n(2n - 1)(2n + 1).$$
 (5)

If R is a relation on the set of positive integers such that "aRb if and only (c) if a^2+b is even", then prove that R is an equivalence relation.

(5)

2.

- 3. Answer the following:
 - (a) If $A = \{x \in \mathbb{R} \mid x \neq \frac{1}{2}\}$ and $f : A \to \mathbb{R}$ is defined by $f(x) = \frac{4x}{2x-1}$, then show that f is invertible.
 - (b) The set of all positive divisors of 42 is a poset with respect to the partial order $\frac{m}{n}$ (m divides n). Draw the Hasse diagram. (5)
 - (c) If P(S) is the power set of a set S and ∪ and ∩ are taken as the join and meet, show that (P(S),⊆) is a lattice.
 (5)
- 4. Answer the following:
 - (a) Show that any infinite subset of a countable set is countable. (5)
 - (b) If every element of a group (G,*) be its own inverse, then show that (G,*) is abelian.
 (5)
 - (c) Prove that every finite integral domain is a field.
- 5. Answer the following:
 - (a) Represent the argument symbolically and determine whether the argument is valid.

If it rains today, then we will not have a party today.

If we do not have party today, then we will have a party tomorrow.

Therefore, if it rains today, then we will have a party tomorrow.

- (5)
- (b) Obtain the principal disjunctive normal form of $\sim p \vee q$. (5)
- (c) Solve the recurrence relation $a_n = a_{n-1} + 2a_{n-2}, n \ge 2$ with initial conditions $a_0 = 0, a_1 = 1$. (5)

6. Answer the following:

(a) Use generating functions to solve the recurrence relation $a_n - 9a_{n-1} + 20a_{n-2} = 0$ with initial condition $a_0 = -3, = a_1 - 10$.

(5)

(b) Find the generating function in closed form of the sequences 1,1,0,1,1,1,1,...

(5)

(c) Prove that the following propositions are tautology.

(2+3=5)

- (i) p∨ ~ p
- (ii) $(p \wedge q) \rightarrow p$.

7. Answer the following:

- (a) Find the GCD of 595 and 252 and express it in the form 252m + 595n. (5)
- (b) If a, b, c, d are integers such that $a \equiv \pmod{m}$ and $c \equiv d \pmod{m}$, then show that $a c \equiv b d \pmod{m}$.
- (c) If $U = \{1,2,3,4,5,6,7,8,9,10\}$, $A = \{3,4,5\}$ and $B = \{1,3,6,10\}$, then find the string representation for A and B.

BINA CHOWDHURY CENTRAL LIBRARY