CSE 181502

Roll No. of candidate		
		BINA CHOWDHURY OF STRAL LIBRAR
	21/2/22_2021	Agent Hills of a give

B.Tech. 5th Semester (R) End-Term Examination

CSE

DESIGN AND ANALYSIS OF ALGORITHM

(New Regulation & New Syllabus)

Full Marks - 70

Time - Three hours

The figures in the margin indicate full marks for the questions.

Answer Q.No. 1 and any four questions from the rest.

1. Answer the following:

 $(10 \times 1 = 10)$

- (a) What are P and NP class problems?
- (b) State Master's Theorem.
- (c) What are randomized algorithms?
- (d) What are the different algorithm strategies?
- (e) What is amortized analysis?
- (f) What is a Minimum spanning tree?
- (g) What is a Network Flow? Give some algorithms to solve it.
- (h) What will the number of comparisons needed to simultaneously find minimum and maximum.
- (i) State Ω notation.
- (j) What are the different approaches to solve Knap Sack problem using greedy method?
- 2. (a) What is dynamic programming? What are the various steps involved in the solution of a dynamic programming problem? (1 + 2 = 3)
 - (b) With working modulo q = 11, how many spurious hits does the Rabin Karp algorithm encounters in the text, T = 314152692 when looking for the pattern, P = 26.
 (8)
 - (c) Differentiate between comparison sort and non-comparison sort.

(4)

Turn over

3. (a) State the Cook's theorem.

- (4)
- (b) Insert the following keys in a red black tree and a Binomial heap and show the steps of construction too. (7 + 6 = 13)
 - 14, 17, 11, 7, 53, 4, 13, 12, 8, 60, 19, 16, 20
- 4. (a) Create a Fibonacci heap from the following keys: H, I, J, B, A, E, C, F, D, G, K, L.
 - (b) What are the different operations on heaps and their complexities too? (4)
 - (c) Sort the following keys using counting sort:

5. (a) Solve the following recurrences:

$$(2+2+3=7)$$

- (i) $T(n) = 2T\left(\frac{n}{4}\right) + \sqrt{n}$. (Master Theorem)
- (ii) $T(n) = 2T(\sqrt{n})$. (Changing variable)
- (iii) $T(n) = 2T(n/2) + \sqrt{n}$. (Recursion tree)
- (b) Show that Master's Theorem cannot be applied on the following recurrence: $T(n) = 4T(n/2) + n^2 \log n$.

Give the solution of the above recurrence too.

(3 + 5 = 8)

- 6. (a) Given a sequence of matrices, $a = 10 \times 100$, $b = 100 \times 20$, $c = 20 \times 5$ and $d = 5 \times 80$. Insert parenthesis so that the product of the matrices, in order, is unambiguous and needs the minimal number of multiplication. (7)
 - (b) Write the algorithm for Q.No. 6 (a). (3)
 - (c) Give a linear ordering for the vertices of the graph and write the algorithm too. (5)

7. (a) Solve the single - source shortest path problem in the given graph from the source vertex. (8)

- (b) Write the algorithm for Q.No.7 (a) and find its complexity too. (4)
- (c) Differentiate between Breadth First Search (BFS) and Depth First Search (DFS).