Total No. of printed pages = 3

EE 131501 (NR)

Roll No. of candidate

17/2/22 2021 BINA CHONDIN

NA CHOWDHURY CENTUL LIBRA PARTY FIRST TOTAL ACRES HERE TO SPECE

B.Tech. 5th Semester End-Term Examination

EE + ECE + AEI + EEE

CONTROL SYSTEM - I

(New Regulations)

Full Marks - 70

Time - Three hours

The figures in the margin indicate full marks for the questions.

Answer question No. 1 and any four from the rest.

Answer the following :

 $(5 \times 2 = 10)$

- (a) Define transfer function, Loop, Non-touching loop and self-loop?
- (b) What is feedback and its effect in close loop system?
- (c) What is an asymptote.
- (d) Define Mason's gain formula.
- (e) Draw polar plot for G(s)H(s) = K/jw.
- 2. (a) Find the Range of K for the system to be (i) stable (ii) unstable (iii) Marginally stable by Nyquist Criterion. (10)

(b) Explain the effect of adding a pole to the forward path transfer function.

(5)

[Turn over

- 3. (a) For unity feedback system $G(S) = \frac{30}{s(1+0.5s)(1+0.08s)}$, Determine GM and PM by sketching Bode Plot on semi log paper. Comment on stability of the system. (10)
 - (b) For a unity feedback control system, the open loop transfer function $G(S) = 10(S+2)/S^2(S+1)$. Find the steady state error when the input is $R(S) = 3/S 2/S^2 + 1/3S^3$. (5)
- 4. (a) The open looptransfer function of a system is $G(s)H(s) = k(s+1)(s^3+bs^2+3s+1)$. Determine the values of K and b so that system will oscillate at frequency of 2 rad/sec by using R-H criteria. (10)
 - (b) Derive the expressions for the peak overshoot and peak time of a second order underdamped feedback system subjected to unit step input.

 (5)
- 5. (a) Consider SISO control system having overall transfer function T(s)=(s²+4s+4)/(s³+5s²+4s). Represent state model in terms of Canonical variable with block diagram and obtain matrices A, B, C, State its stability.
 - (b) Determine the transfer function C/R of the system show in figure using block diagram reduction technique. (8)

6. (a) Determine the ratio C/R, C/D and the total output for the system whose block diagram is (10)

2

(b) Draw the mechanical circuit diagram of given mechanical system.

(5)

- 7. (a) State the advantages and limitations of frequency domain approach. (5)
 - (b) Find the transfer function expression for armature control DC motor. (10)