ECE 181305

Roll No. of candidate

573/22 2021 NA CHUNDINAY CONTRACTIONS

B.Tech. 3rd Semester End-Term Examinati

ECE, ETE

SIGNALS AND SYSTEMS

(New Regulation & New Syllabus)

Full Marks - 70

Time - Three hours

The figures in the margin indicate full marks for the questions.

Answer question No. 1 and any four from the rest.

Answer the following questions: 1.

 $(10 \times 1 = 10)$

- Based on the statements below, pick the correct option
- (A) signal $x[n] = \left(\frac{1}{2}\right)^n u[n]$ is energy signal
- (B) signal $x[n] = \sin \omega \circ n$ is both energy and power signal.
- (C) signal x[n] = n u[n] is only power signal.
 - (a) only (C) is true
 - (b) only (B) is true
 - (c) only (A) is true
 - (d) none of these
 - x[n]-x[n-1] for $n \ge 1$ x[n] for n=0, then the system is (ii) Consider the system y[n] = else
 - (a) hnear and time-variant
 - (b) causal and stable
 - (c) both (a) and (b) are true
 - (d) none of the above

(iii) Find the Fourier series expansion of $F(x) = \sin^3(x)$

- (a) $\frac{1}{4}\sin(x) \frac{3}{4}\cos(3x)$
- (b) $\frac{3}{4}\sin(x) \frac{1}{4}\sin(3x)$
- (c) $\frac{1}{4}\sin(x) \frac{3}{4}\sin(3x)$
- (d) $\frac{1}{4}\cos(x) \frac{3}{4}\cos(3x)$

(iv) Given s signal x[n] which is not absolutely summable and square summable, then which of following is true as related to F{x[n]}?

- (a) exists
- (b) can't say
- (c) doesn't say
- (d) exists if x[a] is differentiable

(v) Given for a signal x[n], Z transform exists, which of the following is not possibly x[n]?

SINA CHOWDHURY CENTER LIBRARY

Sywahas 11 WV

- (b) 2ⁿu[n]
- (c) (0, 1, 2, 3, 4)

(d)
$$-\left(\frac{1}{3}\right)^n u[-n-1]$$

(vi) A LTI system has simple poles at -2 and -4; zero at -3. If the steady-state output when unit step input is applied is 1, then find impulse response of the system.

(a)
$$\frac{3(S+3)}{(S+2)(S+4)}$$

(b)
$$\frac{11(S+3)}{4(S+2)(S+4)}$$

(c)
$$\frac{8(S+3)}{3(S+2)(S+4)}$$

(d) None of these

(vii) The Nyquist sampling frequency for the signal $x(t) = 5\sin\left(\frac{\pi}{2}\right)t$ is

- (a) 0.5 Hz
- (b) 1 Hz
- (c) 2 Hz
- (d) 0.25 Hz

(viii) An analog signal 5 sin $50\pi t$ is sample at the rate of 75 Hz. The DT signal obtained after sampling is

- (a) $5\sin\left(\frac{2\pi}{3}\right)n$
- (b) 5 sin 2πn
- (c) 5 sin 100 π n
- (d) $5\sin\left(\frac{4\pi}{3}\right)n$

(ix) If $x[n] = \{1,2,5\}$, $h[n] = \{1,X,3\}$ and $y[n] = \{1,4,12,16,15\}$. The value of X is

- (a) 2
- (b) -2
- (c) I
- (d) -I

(x) The Fourier transform of a DC signal is

- (a) 0
- (b) 1
- (c) n
- (d) 2π∂(ω).

BINA CHOWDHURY GENTRAL LIBRARY

Avere Hatter apara,

- 2. (a) Sketch the signal x(t) = 2u(t) + tu(t) (t-1)u(t-1) 3u(t-2). (5)
 - (b) Give a performance comparison of multichannel and multidimensional signal. (2)
 - (c) Find the period of the signal, $x(t)\cos(t) + \sin\left(\frac{1}{\sqrt{2}}t\right)$. (3)
 - (d) Test the linearity of the following system

 $\frac{d^{2}y(t)}{dt^{2}} + \frac{2dy(t)}{dt} + 3y(t) = x(t)$

 (a) Determine the Fourier series representation of the half-wave rectifier output.

- (b) State three advantages of Fourier transform.
- (c) State the conditions for existence of Fourier Transform.

Turn over

(3)

(5)

4. (a) Determine the Fourier transform of the periodic pulse function shown in figure below: (10)

(b) Compute 4- point DFT of causal three sample sequence given by, (5

$$x[n] = \begin{cases} \frac{1}{3}; & 0 \le n \le 2 \\ 0; & none \end{cases}$$

- 5. (a) Determine the impulse response h(t) of the following system. Assume zero initial conditions $\frac{d^2y(t)}{dt^2} + 4\frac{dy(t)}{dt} + 3y(t) = \frac{dx(t)}{dt} + 2x(t)$. (7)
 - (b) Perform the convolution of $x_1(t)$ and $x_2(t)$ using convolution theorem of Laplace transform. (5)

(3)

$$x_1(t) = u(t+1), x_2(t) = r(t-2)$$
 where $r(t) = tu(t)$

- (c) Show that $X(j\omega) = X(s)|_{s=j\omega}$.
- 6. (a) Determine the discrete sequence x[n] given $X(z) = \frac{3+2Z^{-1}+Z^{-2}}{1+3Z^{-1}+2Z^{-2}}$. (5)
 - (b) Find the Z-transform and its ROC of the following discrete time signal (5)

$$x(n) = 0.8^n u(-n-1)$$

- (c) What is aliasing? Explain in brief how aliasing can be eliminated. (5)
- 7. (a) The state-space representation of a continuous time system is given by, (6)

$$A = \begin{bmatrix} 2 & -1 \\ 3 & 1 \end{bmatrix}; \quad B = \begin{bmatrix} 1 \\ 2 \end{bmatrix}; \quad C = \begin{bmatrix} 1 & 3 \end{bmatrix}; \quad D = \begin{bmatrix} 3 \end{bmatrix}$$

- Derive the transfer function of the continuous time system.
- (b) Find if the signal $x[n] = -\left(\frac{1}{2}\right)^n u(-n-1)$ is energy or power signal. (4)
- (c) Explain the zero- order hold sampling circuit in detail. (5)