Total No. of pr	rinted pages = 3	
ECE 18150	14	
Roll No. of car	1/3 /2 z 2021 BINA CHOWDHI	CRY CENTRAL LIBRARY MT & DIFFS) Hatky ** ** ** ** ** ** ** ** ** ** ** ** **
	B.Tech. 5th Semester End-Term Exam	
	ECE	
	CONTROL SYSTEMS	
	(New Regulation & New Syllabu	s)
Full Marks - 7	0	Time - Three hours
	for the questions. Answer question No. 1 and any four from	the rest.
1. Answer t	he following (Fill in the blanks):	$(10 \times 1 = 10)$
(a) Wha	t is feedback?	
(b) Why	negative system is invariably preferred in a c	closed loop system?
(c) Defi	ne transfer function?	
(d) Wha	t is transient and steady state response?	
(e) Wha	t is the order of the system?	
(f) Defi	ne resonant peak?	
(g) Defi:	ne BIBO stability?	

[Turn over

What is characteristic equation?

Define non-touching loops.

What is servomechanism?

(h)

(i)

2. (a) Define the transfer function $\frac{X_1(s)}{F(s)}$ and $\frac{X_1(s)}{F(s)}$ for the system shown below.

- (b) Compare open and closed loop system and explain with an example. (7)
- 3. (a) Evaluate the closed loop transfer function when the out R is at
 - (i) at station-I

BINA CHOWDHURY CENTRAL LIBRARY

(ii) at station-II

The system is represented by the block diagram shown below.

(8)

(10)

(b) Find the overall gain $\frac{C(s)}{R(s)}$ for the signal flow graph shown below. (5)

- 4. (a) Derive and draw the response of the first order system for unit step input. (7)
 - (b) For a unity feedback control system the open loops transfer function, $G(s) = \frac{10(s+2)}{s^2(s+1)}.$ Find
 - (i) The position, velocity and acceleration constant, (3)
 - (ii) The steady state error when the input is R(s), where $R(s) = \frac{3}{s} \frac{2}{s^2} + \frac{1}{3s^3}.$ (5)

- 5. (a) A unity feedback control system has an open loop transfer function, $G(s) = \frac{k}{s(s^2 + 4s + 13)}$. Sketch the root locus. (10)
 - (b) Construct Routh array and determine the stability of all the system whose characteristic equation is s⁶ +2s⁵ +8s⁴ +12s³ +20s² +16s+16 = 0. Also determine the number of roots lying on right half of s-plane, left half of s-plane and on imaginary axis.
- 6. (a) Discuss lead and lag compensators. (10)
 - (b) Explain the concept of controllability and observability. (5)
- 7. (a) Sketch Bode plot for the following transfer function and determine the system gain K for the gain cross over frequency to be 5rad/sec. (10)

$$G(s) = \frac{ks^2}{(1+0.2s)(1+0.02s)}$$

(b) What are the advantages of frequency response analysis?

BINA CHOWDHURY CENTRAL LIBRARY
((AIMT & GIPS) &

A. Y. Hallin Wapara,
WATE VICE 17

(5)