Total No. of printed pages = 2	
Roll No. of candidate BINA CHOWDHURY CENTRAL LIBRAGY BINA CHOWDHURY CENTRAL LIBRAGY	
	B.Tech. 7th (New) Semester End-Term Examination
	ECE
	VLSI DESIGN
Full Mar	ks - 70 Time - Three hours
	The figures in the margin indicate full marks
	for the questions.
	Answer question No. 1 and any four from the rest.
1. Ans	wer the following questions: $(5 \times 2 = 10)$
(a)	Define gm of MOS transistor.
(b)	Define scaling and explain it.
(c)	Draw 2-bit comparator.
(d)	What is switch logic?
(e)	Mention about SRAM and its usage.
2. (a)	Explain with neat diagrams the various NMOS fabrication technology. (10)
(b)	Compare depletion and enhancement type MOSFET. (5)
3. (a)	Derive the expression for transfer characteristics of CMOS Inverter. (10)

Discuss and derive expression for channel length modulation.

capacitances of a CMOS inverter.

Draw the circuit diagram; stick diagram and layout for CMOS inverter.

Discuss dynamic power dissipation due to charging and discharging

(b)

(b)

[Turn over

(5)

(5)

BINA CHOWDHURY CENTRAL LIBRARY 5. Describe the following: Arene Halbalwagara, Transmission gate logic -- wahat (70 - 017 Domino Logic. (10)(ii) Design $\overline{F} = (A + B) + (C + D)EF$ using pseudo-NMOS and CMOS logic. -(5)Explain different capacitances present in CMOS design. (8)(a) 6. Explain λ -based Design Rules in VLSI circuit Design. (7)(b) Write a program to implement full adder using VHDL. (10)7. (a) Write a note on the different parameters influencing low power design. (5)(b)