Total No. of printed pages = 4

ECE 181702

BINA CHOWDHURY CENTRAL LIBRARY
(GIMT & GIPS)
Azara, Hatkhowapara
Guwahati – 781017

null Ivo. of Calluluau	Roll	No.	of	candidat	ce
------------------------	------	-----	----	----------	----

19) L 12 2024 INA CHOWDHURY CENTRAL LIBRAGE HAIR STEED

B. Tech. 7th Semester End-Term Examination

ECE + ETE

VLSI SYSTEM DESIGN

(New Regulation w.e.f 2017-18 & New Syllabus w.e.f. 2018-19)

Full Marks - 70

Time - Three hours

The figures in the margin indicate full marks

for the questions.

Answer question No. 1 and any six from the rest.

1.

 $(10 \times 1 = 10)$

- (i) MOSFET can be used as a
 - (a) Current controlled capacitor
 - (b) Voltage controlled capacitor
 - (c) Current controlled inductor
 - (d) Voltage controlled inductors
- (ii) Thermal runaway is not possible in FET because as the temperature of FET increases
 - (a) The mobility decreases
 - (b) The transconductance increases
 - (c) The drain current increases
 - (d) None of the above
- (iii) The drain current of a MOSFET in saturation is given by $I_{ds} = K(V_{gs} V_{th})(V_{gs} V_{th})$ where K is a constant. The magnitude of the transconductance g_m is

(a)
$$K(V_{gs}-V_{th})(V_{gs}-V_{th})/V_{ds}$$

- (b) $2 K(V_{gs} V_{th})$
- (c) $I_{ds} / (V_{gs} V_{th})$
- (d) $K(V_{gs} V_{th})(V_{gs} V_{th})/V_{gs}$

(iv	it and is inserted in a furnace at a further oxidation in dry oxygen. The								
	(a)	Is independent of current	oxide th	ickness and temperature?				
	((b) Is independent of current oxide thickness but depends on temperature							
	(c)	Slow down as the oxide gr	ows					
	(d)	Is zero as the existing oxid	le preve	nts further oxidation				
(v)) A	A gate to drain-connected enhancement mode MOSFET is an example of							
	(;	a)	An active load	(b)	A switching device				
	(c)	A four-terminal device	(d)	A three-terminal device				
(v.			effective channel length o	f a MOS	SFET in a saturation decreases with				
	(:	a)	Gate voltage	(b)	Drain voltage				
	(0	c)	Source voltage	(d)	Body voltage				
(v)	i) T	he	MOSFET switch in its on-s	tate ma	y be considered equivalent to				
	(8	a)	Resistor	(b)	Inductor				
	((c)	Capacitor	(d)	Battery				
(vi	ii) I	n a	transconductance, the devi	ce outpu					
	(8	a)	Voltage depends upon the	input vo	Itage : IMT & SIPS)				
	(1	b)	Voltage depends upon the	input cu	rrent Hatkus-apara,				
	(0	c)	Current depends upon the	input vo	oltage				
	((d)	Current depends upon the	input ci	urrent				
(ix	*		MOSFET operating in ulation effect causes	the sati	uration region, the channel length				
	(8	a)	An increase in the gate-sou	arce cap	acitance				
	(1	b)	A decrease in the Transcor	iductano	e				
70	(0	c)	A decrease in the unity-ga	in cut-of	f frequency				
	(0	d)	A decrease in the output re	esistance					
(x)	n 0	An n-type silicon bar 0.1 cm long and 100 π m ² in cross-sectional area has a majority carrier concentration of $5 \times 10^{20}/\text{m}^3$ and carrier mobility is 0.13m^2 /V-s at 300k. if the charge of an electron is 1.6×10^{-19} Coulomb, then the resistance of the bar is							
	(2	a)	1060hm	(b)	10·1 ohm				
	(0	3.602	10-4 ohm	(d)	10 ⁴ ohm				
ECE 18	170	12		2					

2.	Using appropriate sketches show how a wet-etching photolitho works using:	graphy process
	(a) Positive resists.	
	(b) Negative resist. RINA CHOWDHURY CENTRAL LIE (b) Negative resist.	BRAN
	(c) Remove silicon dioxide insulator.	
	(d) Remove aluminium metallization.	$(4 \times 2.5 = 10)$
3.	(a) What is epitaxial? Why it is necessary in IC fabrication?	
	(b) Explain the deal grove method.	(5+5=10)
4.	Describe the fabrication process of a capacitor with neat diagrams	and steps. (10)
5.	What do you mean by transconductance in a MOS device? Derive MOS transconductance. Draw the flowing	the question of
1	(a) curve of g_m vs. $V_{gs} - V_{th}$ h when W/L constant.	
	(b) curve of g_m vs I_{DS} when W/L constant.	
	(c) curve of g_m vs $V_{gs} - V_{th}$ when I_{DS} constant.	(2+5+3=10)
6.	Describe the various ways how MOS based inverter can be built.	$(4 \times 2.5 = 10)$
7.	Explain CMOS inverter transfer characteristics with a neat diagram and equation of an inverter? Derive with neat diagram and equation	
8.	Draw the stick diagram for the given logic	
	$X = \overline{AB + C}$	(10)
9.	Draw the layout diagram for the given logic $X = \overline{A + B}$.	(10)
10.	Prove the scaling factors for the following:	$(4 \times 2.5 = 10)$
-	(a) Gate capacitance	
	(b) Channel resistance.	
	(c) Maximum operating frequency.	
	(d) Switching energy per gate.	
EC	E 181702	[Turn over

11. Write short notes: (any two)

 $(2 \times 5 = 10)$

- (a) Bi-CMOS logic.
- (b) LOCOS
- (c) Second order effect of MOSFETs.
- (d) Enhancement mode and depletion mode N-MOS.
- (e) Czochralski process.

BINA CHOWDHURY CENTRAL LIBITORY
(GIMT & GIPS)

Azere Halkir wapers,

(S. waher 75 o 17