Total No. of printed pages = 4

BINA CHOWDHURY CENTRAL LIBRARY (GIMT & GIPS) Azara, Hatkhowapara Guwahati - 781017

BCA 171504 E 3

Roll No. of candidate			ε.	1	1	

10/2/22 2021

B.C.A. 5th Semester End-Term Examination

GRAPH THEORY

(New Regulation)

Full Marks - 70

Time - Three hours

The figures in the margin indicate full marks for the questions.

		Answer question N	No. 1 and any f	our from the rest	
Sele	ect Th	e correct Options:		$(10\times1=10)$	
(i)	Len	gth of the walk of a gra	ph is		
	(a)	The number of vertice	s in walk W		
	(b)	Total number of edges	s in a graph		
	(c)	The number of edges	in walk W		
	(d)	Total number of edges	s and vertices	in walk W.	
(ii) What is the number of edges present in a complete graph having n ver					
		(n*(n+1))/2	(b)	(n*(n-1))/2	
	(c)	n	(d)	n-1	
(iii)		at is the maximum n	umber of ed	ges in a bipartite graph having 10	
	(a)	24	(b)	21	
	(c)	25	(d)	16	
(iv	egree is known as a				
52 15	(a)	Multi Graph	(b)	Regular Graph	
	(c)	Simple Graph	(d)	Complete Graph	
	1000000				

			11 11' an adge between any
(v) The nur two ver	mber of circuits that can be tices in a tree is?	create	ed by adding an edge between any
(a) Or	ne	(b) '	ľwo
(c) Th	nree	(d)	At least Two
(vi) For the	e given graph (G), which of t	he foll	ACAITRAL LIBRORY
(b) (is a complete graph is not a connected graph The edge connectivity of the	graph	is 1
	The vertex connectivity of th		
(vii) A con	nnected planar graph havin ns.	ng 6 ve	ertices, 7 edges contains
(a)	15	(b)	11
	3	(d)	4
	3.1 - simple graph with 2	0 vert	ices and 8 components. If we delete a apponents in G should lie between
(a)	7 and 19	(b)	8 and 19
(c)	7 and 20	(d)	8 and 20
(iv) Wha	at is the chromatic number s not contain any odd length	of an r	n-vertex simple connected graph which? Assume $n > =2$.
(a)	2	(b)	3
(c)	n	(d)) n-1
BCA 171504	E 3	2	[[Turn over

	(x)	Which of the following properties does a simple graph not hold?	
		(a) Must be connected	
	4.7	(b) Must have no loops or multiple edges	
		(c) Must be unweighted	
		(d) All of the mentioned	
2.	(a)	Define followings:	$(3 \times 2 = 6$
		(i) Bipartite Graph	
		(ii) Walk and Cycle	
		(iii) Spanning tree	
	(b)	State and prove Hand Shaking Theorem?	(1+3=4)
	(c)	Prove that total number of odd vertices in a graph is always even	(5
3.	(a)	"Two graphs equal number of vertices and equal number of edge be isomorphic" Justify your answer.	es may no
	(b)	If a connected graph has exactly two vertices of odd degree there path joining these two vertices.	
	(c)	Prove that a graph G is disconnected if and only if its vertex s partitioned into two non empty, disjoint subsets V1 and V2 such exist no edge in G whose one vertex is in subset V1 and the other V2.	that there
	(d)	If G is a simple graph having n vertices and e edges with minimum δ and maximum degree Δ , then prove that $\delta \leq 2e/n \leq \Delta$.	1,7
4.	(a)	"Complete graph is a regular graph". Justify your answer.	(3)
	(b)	State and explain Konigbergs Bridge problem.	(5)
	(c)	Prove that, a simple graph with n vertices and k components ha $(n-k)(n-k+1)/2$ edges.	
5.	(a)	Define a tree.	
	(b)	Prove that, a graph is tree if and only if it is minimally connected.	(2)
	(c)	Prove that a tree with n vertices has exactly n-1 edges.	(4)
	(d)	Show that the number of pendent vertices in a tree of n vertices is (
BC	171	504 T 9	(4)
-		3 gr	HEN OWON

6.	(a)	What is the maximum possible number of vertices in a k-level tree?	(3)
	(b)	Derive an expression for calculating maximum height of a binary tree.	(4)
	(c)	Write the different steps for checking planarity of a graph.	(4)
	(d)		(4)
7.	(a) (b)	State the differences between Kruskal's and Pin's Algorithms. What are the different kinds of information can be obtained from	(3) an (3)
	(-)	adjacency matrix? Prove that every complete tournament has a directed Hamiltonian path	(4)
	(c)		(5)
	(d)	State and established the five colour theorem. BIMA CHOWDHURY CENTRAL LIDERAL BIMA CHOWDHURY CENTRAL BIMA CHOWDHURY CHOWHURY CENTRAL BIMA CHOWDHURY CHOWHURY CHOWHURY CHOWHURY CHOWHURY CHOWHURY CHOWHURY CHOWHURY CHOWHURY CHOWN	a ***