Tota	al No.	of p	rinted pages = 3					
CA	132	105						
Roll No. of candidate								
			25/3722 2	022	AZENE Hatkingwapara,			
			M.C.A. 1st Semester I	End-Te	rm Examination			
			COMPUTER ORIENTEI	NUM.	ERICAL METHODS			
		3 4	New Regulation	n (w.e.f	£. 2017 – 18)			
Full	Mar	ks –	70		Time - Three hours			
		T	he figures in the margin indi Answer questions No.					
1.	Ans	wer	the following:		$(10 \times 1 = 10)$			
	(i)	The	The shifting operator E is equal to					
		(a)	1-Δ	(b)	$\Delta-1$			
		(c)	1+Δ	(d)	None of these			
	(ii)	ies in the interval						
		(a)	[0, 1]	(b)	[1, 2]			
		(c)	[2, 3]	(d)	None of the above			
	(iii)	Gai	uss elimination method is als	so know	n as			
		(a)	Direct method	(b)	Indirect method			
		(c)	Step by step method	(d)	Self correcting method			
	(iv)	uation of nth degree is						
		(a)	n	(b)	n+1			
		(c)	n-1	(d)	n+2			
	nown as							
		(a)	Method of false position	(b)	Method of tangents			
		(c)	Method of chord	(d)	None of the above			
	(vi) The rate of convergence of bisection method is							
		(a)	2	(b)	3			

(d) 1

[Turn over

(c) 1.3

(vii)	ormula is used generality for finding							
	(a)	Near the staring of the table	(b)	Near the middle of the table				
	(c)	Near the end of the table	(d)	None of the above				
(viii) The number of subintervals in Trapezoidal rule is a multiple of								
	(a)	1	(b)	2				
	(c)	3	(d)	4				
(ix)	$\Delta^n y$, is equal to						
4	(a)	$\Delta^n y_{r+n}$	(b)	$\nabla^n y_{r+n}$				
	(c)	$\nabla^n y_r$	(d)	None of the above				
(x)	In Simpson's three-eight rule, the number of subintervals should be taken as multiple of							
	(a)	1	(b)	2				
	(c)	3	(d)	4				
Ans	wer	the following:		$(3 \times 5 = 15)$				
(a)	Find $f(2)$ from the following table:							
		x: 1 = 3	3 5	7				
		f(x): 4 3	2 64	1 128				
(b)	Fir	Find the polynomial which is satisfied by (-4, 1245), (-1, 33), (0, 5), (2, 9) and (5, 1335) by using Newtown's divided difference formula.						
(c)	The velocity v (km / min) of a vehicle which starts from rest is given at fixed interval of time t (min) as follows:							
				14 16 18 20				
		v: 10 18 25 29 3	2 20	11 5 2 8				
	Es	timate approximately the dista	ance o	covered in 20 minutes.				
An		the following:		$(3 \times 5 = 15)$				
(a)	Ap	oply Gauss elimination meth-	od to	solve the equations $x + 4y - z = -5$;				
		+y-6z=-12; $3x-y-z=4$.						
(b)	Find a root of $x^3 - x - 11 = 0$ using bisection method up to third iteration.							
(c)	To the method find approximate value of v when							
		= 0.6 of $\frac{dy}{dx} = 1 - 2xy$, given the						
132	105		2					

2.

3.

4. Answer the following:

 $(3 \times 5 = 15)$

(a) From the following data, estimate the number of persons having incomes between 2000 and 2500:

Income: Below 500 500-1000 1000-2000 2000-3000 3000-4000
No. of persons: 6000 4250 3600 1500 650

(b) By means of Lagrange's formula, show that

 $y_0 = \frac{1}{2}(y_1 + y_{-1}) - \frac{1}{8} \left\{ \frac{1}{2}(y_3 - y_1) - \frac{1}{2}(y_{-1} - y_{-3}) \right\}$ (SIMT & RIPS) Agreement Hatking apparature of the support of t

(c) The following data gives the velocity of a particle for 20 seconds at an interval of 5 seconds. Find the initial acceleration using the entire data:

Time t (sec): 0 5 10 15 20 Velocity v (m / sec): 0 3 14 69 228

5. Answer the following:

 $(3 \times 5 = 15)$

- (a) Find the root of the equation $xe^x = \cos x$ using the regula falsi method up to third iteration.
- (b) Apply Gauss-Seidal iteration method to solve the equations up to third iteration.

$$20x + y - 2z = 17$$
; $3x + 20y - z = -18$; $2x - 3y + 2z = 25$

- (c) Solve the first order differential equation $\frac{dy}{dx} = x y^2$; y(0) = 0 in the range $0 \le x \le 0.6$ correct to four decimal places (take h = 0.2) using Euler's method.
- 6. Answer the following:

 $(3 \times 5 = 15)$

- (a) Find an iterative formula to find \sqrt{N} , where N is a positive integer.
- (b) Show that the rate of convergence of Newton-Raphson is quadratic.
- (c) Using Simpson's one-third to evaluate $\int_{4}^{8} \frac{dx}{x}$ using four equal sub-intervals.