		V C				
Total No	. of pri	nted pages = 4				
CA 132	2103					
Roll No.	of cano	lidate				
		21/3/ M.C.A. 3 rd Sem			OWDHURY CENTRAL Lion it ilMT & RIPS) Avera Hatkingwapara, m Examination	
		THEORY	OF COMPUT	E	R SCIENCE	
		O	New Regulat	ic	on)	
Full Marks - 70 Time - Three ho					Time - Three hours	
1 Cho	oose th		No. 1 and an	У	four from the rest. $(10 \times 1 = 10)$	
1. Cho		e correct answers :			$(10 \times 1 = 10)$	
(i)	Whic	th of the following pl	hrase is appro	pı	riate for an universal quantifier?	
	(a)	"for each"	(b)		"for some"	
	(c)	"for all"	(d)		"for few"	
(ii) A statement that is always true is known as,				n as,		
	(a)	Tautology	(b)		Contingency	
	(c)	Contradiction	(d)		None of the above	
(iii)	(iii) If Σ ={0,1}, then the number of possible different strings with length exnare,					
	(a)	2n-1	(b)		2 ⁿ	

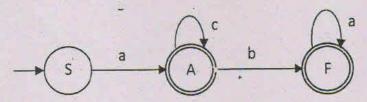
None of the above $2^{n}-1$ (d) (c)

(iv) Regular set corresponding to the regular expression a(cc)*b is,

{ab,accb,accccb,.....} (b) {abc,abcc,abccc,.....} (a)

None of the above {acb,accb,acccb,.....} (d) (c)

(*)	4									
	<i>p</i> = ∴~									
		name of the inference rule is								
	(a)	Conjunction (b) Addition								
	(c)	Simplification (d) Modus tollens								
(vi)	If R	R_2 are two regular expressions, then which of the following is R_2 ?	not							
	(a)	R ₁ + R ₂ is a regular expression								
	(b)	R ₁ cannot be o								
	(c)	R ₁ R ₂ is a regular expression								
	(d)	(R ₁ + R ₂)* is a regular expression								
(vii)	A st	ring w is accepted by an NFA if,								
	(a)	all states should be the final state in the NFA								
	(b)	atleast two paths among all possible paths lead to the final state								
	(c) atleast one path among all possible paths leads to the final state									
	(d)	initial state always should be the final state in the automation								
(viii)	The	output of a Moore machine depends on,								
	(a)	(a) the present state								
	(b)	the present state and the input symbol								
	(c) the input symbol only									
	(d)	none of the above								
(ix)	A re	gular language is also called								
	(a)	Type-0 language (b) Type-1 language								
	(c)	Type-2 language (d) Type-3 language								
(x)	A re	gular expression corresponding to the regular set {\epsilon,a,b} is,								
	(a)	a+b (b) ab								
	(c)	a^*b^* (d) $\epsilon+a+b$								
Ansv	ver a	ny four questions from the following,								
(a)	Draw the truth table of the proposition: $(\neg p \lor q) \land (\neg q \lor \neg p)$. (6)									
(b)	Obtain the principal disjunctive normal for of $q \lor (p \lor \neg q)$. (5)									
(c)	Wha	hat is a predicate and propositional function? Give an example. What are								


2.

(4)

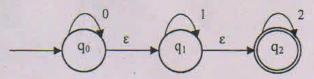
the two type of quantifier used in predicate calculus?

3. (a) Prove that $(p \land (p \Leftrightarrow q)) \Rightarrow q$ is a tautology.

- (6)
- (b) Consider the propositional functions K(x): x is man, L(x): x is mortal, M(x): x is integer, N(x): x is either positive or negative. Express the following using quantifiers
 - (i) All man are mortal
 - (ii) Any integer is either positive or negative. (4)
- (c) Show that t is a valid conclusion from the premises $p \Rightarrow q$, $q \Rightarrow r$, $r \Rightarrow s$ and $p \lor t$.
- 4. (a) Define regular expression. Using Arden's theorem find the regular expression corresponding to the finite automation given below, (6)

- (b) What is a reflexive, symmetric and transitive relation? (6)
- (c) For the following productions of a regular grammar construct the corresponding finite automation,
 (3)
 S → aA, A → bB, B → bS | b
- 5. (a) Define a phrase structure grammar. What are the different type of grammars? (5)
 - (b) Construct finite automata corresponding to the regular expression, (aba+b(aa)*a).
 - (c) Does the string aaababaa accepted by the grammar whose productions are as follows:

S→aA


A→aA|aB|a

B→bA

6. (a) What is the difference between a DFA and NFA? Find a deterministic finite automation equivalent to M=({q₀, q₁, q₂, q₃},{0,1},δ, q₀,{ q₃}) where δ is given by,

State	0	1	
→ q ₀	q0,q1	qo .	
q 1	q ₂	q ₁	
q_2	q ₃	q ₃	
q ₃		q ₂	

(b) Remove the e-productions from the following finite automata,

- 7. (a) Show that regular sets are closed over union operation.
 - (b) Identify the type of the grammar whose productions are: (2)
 ABC→aBc, C→ac, B→a

(6)

(4)

- (c) Write 4 strings generated by the regular expression: $\mathbf{a}^*\mathbf{b}^*\mathbf{c}^*$ (4)
- (d) What is ambiguity in a CFG? Explain. (5)

BINA CHOWDHURY CENTT - LONARY

15 IMT & IPS)

15 IMT & IPS)

16 Wahab 17 1017