Total No	o. of p	printed pages = 3						
CSE 181303								
Roll No. of candidate								
			2023	Azəraş Halkhov Guwahali -78	repara,			
B.Tech. 3rd Semester End-Term Examination								
DIGITAL SYSTEMS								
Full Ma	rks –	70			Time – Three hours			
	Т	he figures in the marg	gin indicate ful	l marks for the qu	uestions.			
		Answer Question	No. 1 and any	four from the res	st.			
1. An	swer	the following (MCQ/ I	fill in the blank	xs):	$(10\times 1=10)$			
(i)	Con	nvert the binary numb	per (01011.101	1) ₂ into decimal				
	(a)	$(11.6875)_{10}$	(b)	$(11.5874)_{10}$				
	(c)	$(10.9876)_{10}$	(d)	$(10.7893)_{10}$				
(ii)	The	e following hexadecim	al number (1E	.43) ₁₆ is equivaler	nt to			
	(a)	(36.506)8	(b)	(36.206)8				
	(c)	(35.506)8	(d)	(35.206)8				
(iii) Convert (0.345) ₁₀ into an octal number								
	(a)	(0.16050)8	(b)	$(0.26050)_8$				
	(c)	(0.19450)8	(d)	$(0.24040)_8$				
(iv) The excess-3 code for 597 is given by ————.								
	(a)	100011001010	(b)	100010100111				
	(c)	010110010111	(d)	010110101101				
(v)								
	(a)	complement of 110010 01010111	(b)	11010100				
	(c)	00110101	(d)	11100010				
					Turn over			

(vi)	The	gates required to build a half	adder	are ———.				
	(a)	EX-OR gate and NOR gate	(b)	EX-OR gate and OR gate				
	(c)	EX-OR gate and AND gate	(d)	EX-NOR gate and AND gate				
(vii)	The	expression $Y = AB + BC + AC$	show	s the ——— operation.				
	(a)	EX-OR	(b)	SOP				
	(c)	POS	(d)	NOR				
(viii		expression $Y = (A + B)$ (Bration.	+ C	(C + A) shows the				
	(a)	AND	(b)	POS				
	(c)	SOP	(d)	NAND .				
(ix)		h product term of a group, w' nat group.	.x.y' a	nd w.y, represents the				
	(a)	Input	(b)	POS				
	(c)	Sum-of-Minterms	(d)	Sum of Maxterms				
(x)		ch of the following logic fa uency?	milies	s has the highest maximum clock				
	(a)	S-TTL	(b)	AS-TTL				
	(c)	HS-TTL	(d)	HCMOS				
(a)	Stat	e and prove Demorgan's theor	em.	(5)				
(b)	Com	Compare Combinational circuits with sequential circuit. (5)						
(c)	Desi	ign 3-bit Binary to Gray code c	onver	ter: (5) Azara, Heikhowapara, Guwahati -781017				
(a)	Usir	Using a K map simplification process determine the logic expression that						
	will	active the segment from 0 to 9		(10)				
(b)	Drav	w the 4×16 decoder circuit us:	ing tw	$70.3 \times 8 \text{ Decoders}.$ (5)				

2.

3.

4.	(a)	Draw and explain a neat circuit diagram of the BCD adder using	g IC 7483. (5
	(b)	Minimize the following expression using quine McCluskey Techn $F(A, B, C, D) = \sum m(1, 3, 7, 11, 15) + d(0, 2, 5)$.	
	(c)	Implement the following function using a single 8:1 multiplexe	r
		$f(A, B, C, D) = \sum m(2, 3, 5, 7, 8, 9, 12, 13, 14, 15).$	(5
5.	(a)	Explain a full adder circuit using PLA having three inputs, 8-prand two outputs.	oduct terms
	(b)	What are shit registers? How are they classified? Explain the any type of shift register.	working o
6.	(a)	Explain Master slave JK Flip-flop.	(5)
163	(b)	Convert T flip-flop to D Flip-flop.	(5)
	(c)	Explain about ripple counter. (GINT & GIPS) Azara, Halkhowepara, Guvahati -781017	(5)
7.	(a)	Construct the PROM using the conversion from BCD code to Exc	ess-3 code.
			(5)
	(b)	What is an ADC? Using which theorem it works, explain.	(5)
	(c)	Draw the MOD-2 counter.	(5)
8.	(a)	Write the difference between PROM, PLA and PAL.	(5)
	(b)	Write about the following: (any two)	(5 + 5 = 10)
		(i) Transistor - Transistor Logic (TTL)	
		(ii) Emitter - Coupled Logic (ECL)	
		(iii) CMOS Logic	