Total No. of printed pages = 6			
ECE 181304 17/2/23			
Roll No. of candidate			
BINA CHOWD (CIMT & GINS) (CIMT & GINS)			
2023 Azara, 1800 781017 Guwahati 781017			
B.Tech. 3rd Semester End-Term Examination			
ETE / ECE			
NETWORK THEORY			
(New Regulation and New Syllabus)			
Full Marks – 70 Time – Three hours			
The figures in the margin indicate full marks for the questions.			
Answer Question No. 1 and any four from the rest.			
1. Choose the correct answer: $(10 \times 1 = 10)$			
(i) A network which contains one or more than one source of emf is known as			
(a) Linear network (b) Non linear network			
(c) Passive network (d) Active network			
(ii) A non-linear network does not satisfy			
(a) Superposition condition			
(b) Homogeneity condition			
(c) Both Homogeneity and Superposition condition			
(d) Homogeneity, Superposition and associative condition			
(iii) The no. of independent equations to solve a network is equal to			
(a) The number of chords			
(b) The number of branches			
(c) Sum of the no of branches and chords			
(d) Sum of the no of branches, chords and nodes [Turn over			

(iv) For determining the polarity necessary to know the	of a vol	tage drop across a resistor, it is
	WOHLERY (ENTRAL LIBRARY
	Azara, Hatki Guwahati	owapara,
(c) Direction of current flowing	g through	the resistor
(d) Value of emf in the circuit		
(v) What is the condition on Z-para	meters fo	or a reciprocal network
(a) $z_{11} = z_{22}$		$z_{12} = z_{21}$
(c) $z_{12} = z_{11}$	(d)	$z_{22} = z_{21}$
(vi) The cut-off frequency of a series	s RL low-	pass filter is
(a) $W_c = \frac{L}{R}$		$W_{\rm c} = \frac{R}{L}$
(c) $W_c = \frac{1}{LR}$	(d)	$W_c = LR$
(vii) The rms value of a sine wave is	s 100 A. I	ts peak value is
(a) 131.4 A	(b)	141.4 A
(c) 151.4 A	(d)	161.4 A
(viii) The ratio of active power to ap	parent po	ower is known as
(a) RMS value	(b)	Peak factor
(c) Power factor	(d)	Form factor
(ix) What is the dual of charge?		
(a) Resistor	(b)	Capacitor
(c) Inductor	(d)	Flux
(x) A delta circuit has each elem	nent of va	alue $R/2$. The equivalent elements of
the star circuit will be		
(a) R/6	(b)	R/3
(c) 2R	(d)	3 <i>R</i>

ECE 181304

Find v_0 and i_0 .

Find i_1 , i_2 and i_3 in the circuit below:

Find the current through $j3\Omega$. 3.

ECE 181304

3

[Turn over

(5)

(4)

(6)

(7)

(b) Find the value of Z_L to be connected between the terminals AB for maximum power transfer. Find maximum power. (8)

4. (a) Find i(t) in the circuit when the switch 'K' closed at t=0. (8)

(b) Find $I_1(s)$. Assume all initial conditions to zero.

(7)

Find the transmission parameters for the circuit.

Draw the graph of the network below. Find incidence matrix and f-cutset 6. matrix.

(b) Construct the dual of the network.

7. (a) Find the value of L for which the circuit is resonant at a frequency w = 10000 rad/sec. (5)

- (b) Define passive filter. Explain different types of passive filters with proper diagram. (5)
- (c) Find the power dissipated in 1 Ω resister. (SIMTA GIPS)

 Azara, Heikhovepara, (5)

