| Total No. of printed pages = 2 | | | |----------------------------------|-------|---| | EC | E 1 | 81702 | | Rol | l No. | of candidate | | | | 31/11/2022 BUNCHOWNLERN CHUTRALLIERARY 2022 BUNCHOWNLERN CHUTRALLIERARY (GMT 8 GHS) Azers, Hawnownpara, Gunnardt -78.1017 | | | | B.Tech. 7th Semester End-Term Examination | | | | ECE + ETE | | | | VLSI SYSTEM DESIGN | | | | New Regulation w.e.f 2017 - 18 & New Syllabus w.e.f 2018 - 19) | | Full Marks - 70 Time - Three hou | | | | 1. | Fill | Answer Question No. 1 and any four from the rest, in the blanks : $(10 \times 1 = 10)$ | | 1, | | The V_{ds} is (lesser/greater) than $(V_{gs} - V_t)$ in MOSFET for | | | (b) | As source drain voltage increases, channel depth | | | (c) | The photoresist layer exposed tolight during MOS fabrication. | | | (d) | BiCMOS has low power dissipation (true/false). | | | (e) | CMOS is (unidirectional/bidirectional). | | | (f) | The colour is used for implant in stick diagram. | | | (g) | In λ - based design rules, the spacing between two diffusion layers is | | | (h) | Propagation time is directly proportional to | | | (i) | The subsystem of the circuits should have(minimum/maximum) interdependence. | | | (j) | The power dissipation is directly proportional to square of | | 2. | (a) | What are the steps involved in IC fabrication. (3) | | | (b) | Explain the nMOS fabrication process with suitable diagram. (7) | | | (c) | Draw the circuit schematic and stick diagram for the three input NAND Gate. $(2+3=5)$ | [Turn over | (a) | Explain briefly about sheet resistance. | 3) | |-----|--|--| | (b) | | | | (c) | | | | (a) | What is channel length modulation of MOS device? | 3) | | (b) | What is transistor sizing? With expression explain in short the dynam power dissipation in CMOS. (2+3 = | ic
5) | | (c) | | 1g
(7) | | | (i) Gate Capacitance | | | | (11) Children Manney Manney (11) | | | | (iii) Power Dissipation per Gate. | | | (a) | What is Body effect? | (2) | | (b) | | | | (c) | parameters $V_{GS} = 5V$; $V_{in} = 1.2V$; $W/L = 110$; $\mu_{ii}C_{ox} = 110\mu A/V^2$. Fin | ng
nd
(5) | | (a) | Define Fan – in and Fan – out. | (2) | | (b) | Find the worst-case parasitic delay of an n-input NOR gate. | (ā) | | (c) | TARGET AND THE PROPERTY OF | of
(8) | | (a) | Discuss the single stuck – at fault model. | (5) | | (b) | What is logical effort? Find the logical effort of 2-input NAND gate. | (5) | | (c) | Explain the operation of three transistor dynamic RAM cell | (5) | | | (b) (c) (a) (b) (c) (a) (b) (c) (a) (b) | (b) Derive the expression for sheet resistance for nMOS transister and find the same for a minimum size nMOS transistor. (2+2 = (2) State the λ- based design rules. Draw the layout diagram for the give logic Y = AB. (2+6 = (3) What is channel length modulation of MOS device? (4) (b) What is transistor sizing? With expression explain in short the dynam power dissipation in CMOS. (2+3 = (2) What is scaling? How it enhance device parameter. Derive the scaling factors for the device parameters (1) Gate Capacitance (11) Current density and (111) Power Dissipation per Gate. (a) What is Body effect? (b) What is pass transistor and transmission gate? Explain how switch logic crobe implemented using Pass transistors. (3+5 = (c) An nMOS transistor is operating in saturation region with the following parameters V_{OS} = 5V; V_{In} = 1.2V; W/L = 110; μ_nC_{ox} = 110μA/V². Find transconductance of the device. (a) Define Fan — in and Fan — out. (b) Find the worst-case parasitic delay of an n-input NOR gate. (c) With neat circuit diagram and truth, table explain the operation Manchester carry chain adder. (a) Discuss the single stuck — at fault model. (b) What is logical effort? Find the logical effort of 2-input NAND gate. |