13-06-19

Total No. of printed pages = 7

ME 181104 BINA CHOWDHURY CENTRAL LIBRARY (GIMT & GIPS)

Azara, Hatkhowapara,

Roll No. of candidate

2019

B.Tech. 2nd Semester End-Term Examination ENGINEERING MECHANICS

(New Regulation)

(w.e.f 2017-18) and New Syllabus (Group - A) (w.e.f 2018-2019)

Full Marks - 70

Time - Three hours

The figures in the margin indicate full marks for the questions.

Answer question No. 1 and any four from the rest.

- 1. Choose the right answer(s) from the MCQ $(10 \times 1 = 10)$
 - (i) If the scalar triple product of three vectors equal to zero, then the vectors are
 - Coplaner (a)
 - Non-coplaner (b)
 - (c) Either coplanar or non coplanar
 - None of the above (d)

Turn over

- (ii) According to principle of transmissibility of forces, the effect of force upon a body is
 - (a) Maximum when it acts the centre of gravity of the body
 - (b) Same at every point in its line of action
 - (c) Minimum when it acts at the centre of gravity of the body
 - (d) Different at different points in its line of action
- (iii) Reactive components of a hinge joint supported on a horizontal plane
 - (a) Only vertical force
 - (b) Only horizontal force
 - (c) Both vertical and horizontal force
 - (d) None of these
- (iv) For two unlike and parallel forces, there exists.
 - (a) A resultant force
 - (b) A resultant moment
 - (c) A resultant force and the moment
 - (d) None of the above
- (v) In truss structure, the nature of reactive force is in the nature of
 - (a) Axial
 - (b) Bending
 - (c) Both axial and bending
 - (d) None of the above

- (vi) Method of section of truss analysis is generally, found useful to determine
 - (a) Forces in all members
 - (b) Forces in selective members
 - (c) Weights of the members
 - Bending of the members (d)
- (vii) Rolling friction is a variety of
 - Static friction
 - BINA CHOWDHURY CENTRAL LIBRARY (GIMT & GIPS) (b) Belt friction Azara, Hatkhowapara, Guwahati -781017
 - Kinetic friction (c)
 - (d) Surface tension
- (viii) Centre of gravity and centre of mass identical in case of
 - Object involving effect of large height (a)
 - Very large object (b)
 - Object having no effect of large height and (c) space
 - None of the above (d)
- (ix) The efficiency of a self locking lifting machine should be
 - (a) Less than 50%
 - (b) More than 100%
 - Within the range of 80-90% (c)
 - (d) None of the above

- (x) In virtual work principle, the displacement of rotation should necessarily be
 - (a) Real
 - (b) Imaginary
 - (c) Real and imaginary both are possible
 - (d) None of the above
- 2. (a) State and Prove Varignon's theorem (8)
 - (b) Two identical iron spheres each of radius 5 cm and weight 150 N is connected with a string of length 16 cm, and rests on a horizontal smooth floor. Another sphere of radius 6cm and weight 200 N test over them. Determine the tension in the string and reaction at all contact surfaces. (7)

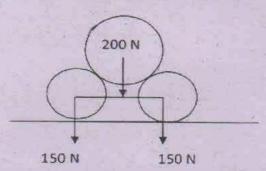


Figure 1

3. (a) For the plane truss AEDCB as shown in the figure determine the induced axial forces in the member AE, BE, BC (7)

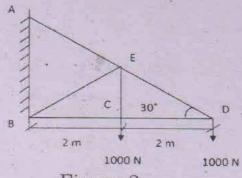


Figure 2

(b) A ladder as shown in the figure is 4m long and supported by a horizontal floor and vertical wall. The coefficient of friction at the wall is 0.25 and that at the floor is 0.5.the weight of the ladder is 30 N and is considered to be concentrated at C. The ladder also supports a vertical load of 150 N at C

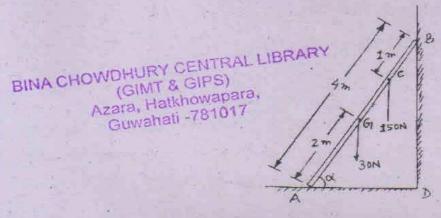


Figure 3

Determine the reactions at A and B and compute the least value of (a) at which the ladder may be placed without slipping to the left. (8)

- 4. (a) What do you mean by parallel axis theorem of moment of inertia? Find the moment of inertia of a circular section about its X-X axis (7)
 - (b) A semi circular area is removed from a trapezium as shown in the figure. Determine the centroid of the remaining area. (all Dim, are in mm)

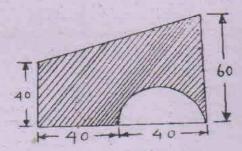


Figure 4
5

- 5. (a) Define velocity ratio and mechanical advantage of a machine. Derive a relation among mechanical advantage velocity ratio and efficiency of a machine. (5)
 - (b) What do you understand by the term Reversibility of a machine? Explain the difference between a reversible machine and self-locking machine (5)
 - (c) In a certain machine, an effort of 10 N is just able to lift a load of 84 N. Calculate the efficiency and the friction both on effort and load side if the velocity ratio of the machine is 10.
- 6. (a) What do you mean by principle of virtual work?

 Using the principle of virtual work determine the reaction of a beam AB of span 10 m carries two point loads 15 kN and 20 kN at 4 m and 6 in from the end A respectively. (7)

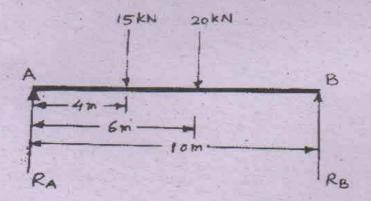
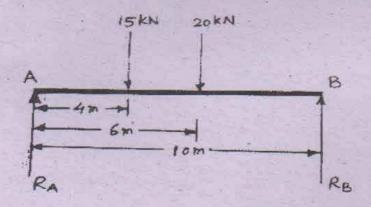



Figure 5

- 5. (a) Define velocity ratio and mechanical advantage of a machine. Derive a relation among mechanical advantage velocity ratio and efficiency of a machine. (5)
 - (b) What do you understand by the term
 Reversibility of a machine? Explain the
 difference between a reversible machine and
 self locking machine (5)
 - (c) In a certain machine, an effort of 10 N is just able to lift a load of 84 N. Calculate the efficiency and the friction both on effort and load side if the velocity ratio of the machine is 10.
- 6. (a) What do you mean by principle of virtual work?

 Using the principle of virtual work determine the reaction of a beam AB of span 10 m carries two point loads 15 kN and 20 kN at 4 m and 6 in from the end A respectively. (7)

(b) A load W is lifted up using a pulley device shown in the figure. Determine the effort required to raise the load if R = 11 cm r = 2.1 cm. Neglect the friction in the movable pulley and take co-efficient of friction in the journals supporting the pulleys is $\mu=1/3$. Use method of virtual work and find the efficiency of the system.

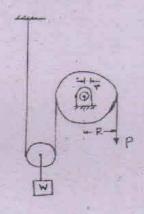


Figure 6

- 7. (a) Derive the expression for work done and kinetic energy of a rigid body when it is subjected to both translational and rotational motion. (8)
 - (b) A locomotive draws a train of mass 400 tonnes, including its own mass, on a level ground with a uniform acceleration, until it acquires a velocity of 54 km/h in 5 minutes.

If the frictional resistance is 40 N per tonne of mass and the air resistance varies with the square of the velocity. Find the power of the engine. Take air resistance as 500 N at 18km/h.