18-06-19

Total No. of printed pages = 4

CS 131604

BINA CHOWDHURY CENTRAL LIBRARY (GIMT & GIPS)

Azara, Hatkhowapara,

Roll No. of candidate

Guwahati -781017

2019

B.Tech. 6th Semester End-Term Examination

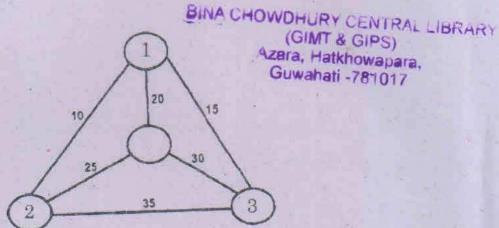
Computer Science and Engineering

DESIGN AND ANALYSIS OF ALGORITHMS

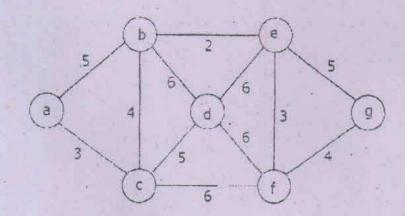
Full Marks - 100

Time - Three hours

The figures in the margin indicate full marks for the questions.

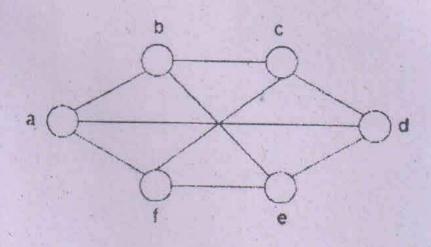

Answer Q.No. 1 and any six from the rest.

- 1. Answer the following questions: $(10 \times 1 = 10)$
 - (a) _____ is the first step in solving the problem.
 - (b) The complexity of three algorithms is given as: O(n), $O(n^2)$ and $O(n^3)$. Which should execute slowest for value of n?
 - (c) What do you mean by principle of optimality?
 - (d) There are four algorithms Al. A2. A3. A4 to solve the given problem with the order log(n). nlog(n), log(log(n)), n/log(n) Which is the best algorithm.
 - (e) The time complexity of binary search is


[Turn over

- (f) Which of the following sorting procedures is the slowest?
 - (i) Quick Sort
 - (ii) Heap Sort
 - (iii) Merge
 - (iv) Bubble.
- (g) What do you mean by MST?
- (h) In which stage of complexity analysis binary search = Linear search?
- (i) How many passes are required to sort a file of size n by bubble sort method?
- (j) The worst-case time complexity of Quick Sort is
- 2. (a) Solve the recurrence relation, where T(1)=1 and T(n) for n >= 2 satisfies $T(n) = 2T(n/2) + n^2$ using Master Theorem.
 - (b) What do you by algorithm analysis? What are the types of algorithm analysis?
 - (c) Show that $(n+a)^b = theta(n^b)$. (8+4+3)
- 3. (a) Define the recursion with example.
 - (b) $T(n) = T(n/4) + T(n/2) + n^2$, solve using recursion tree method.
 - (c) Express the formula (n-1)*(n-5) in terms of Big Oh notation. (2+10+3)
- 4. (a) Explain the complexity of merge search.
 - (b) Design a divide and conquer type algorithm to compute the maximum of n numbers.
 - (c) In quick sort, why pivot is chosen from the centre of the list rather than from one end.
 - (d) Write the algorithm for binary search. (5+4+3+3)

- 5. (a) What is the difference between dynamic programming and Greedy algorithm?
 - (b) Explain SSSP algorithm for the following graph.


- (c) Find the LCS from the following "ABCB" and "BDCAB" using back tracking. (3+5+8)
- 6. (a) What is the greedy criterion for knapsack problem?
 - (b) Show that the space complexity of quick sort varies in between $\phi(\log n)$ to $\phi(n)$.
 - (c) Find the MST using Kruskal's Algorithm (Step By Step).

- 7. (a) Solve the following 0/1 Knapsack problem using dynamic programming P = (20, 18, 15), W = (60, 14, 10), C = 116, n = 3.
 - (b) Explain topological sorting.
 - (c) Explain the difference between 0/I knapsack problem and fractional knapsack problem.

(8+4+3)

- 8. (a) Explain the DFS algorithm with an example.
 - (b) Explain the difference between NP Complete and NP Hard class.
 - (c) Is the dynamic programming algorithm for 0-1 knapsack problem a polynomial time algorithm? (5+5+5)
- 9. (a) Explain the algorithm for Huffman coding with example.
 - (b) Explain backtracking approach for 4 queen problem.
 - (c) Find the chromaticity for the following graph.

