Total No. of printed pages = 8

CS 1318 E 033 BINA CHOWDHURY CENTRAL LIBRARY (GIMT & GIPS)

Roll No. of candidate

Azara, Hatkhowapara Guwahati -781017

2019

B. Tech. 8th Semester End-Term Examination

INTRODUCTION TO MACHINE LEARNING (Elective III)

Full Marks - 100

Time - Three hours

The figures in the margin indicate full marks for the questions.

Answer question No. 1 and any six from the rest.

1. Answer the following questions:

 $(10\times 1=10)$

- (i) The effectiveness of an SVM depends upon
 - (a) Selection of Kernel
 - (b) Kernel Parameters
 - (c) Soft Margin Parameter
 - (d) All of the above
- (ii) Which of the following gives non-linearity to a neural network?
 - (a) Stochastic Gradient Descent
 - (b) Rectified Linear Unit
 - (c) Convolution function
 - (d) None of the above

[Turn over

- (iii) Why is the XOR problem exceptionally interesting to neural network researchers?
 - (a) Because it can be expressed in a way that allows you to use a neural network
 - (b) Because it is complex binary operation that cannot be solved using neural networks
 - (c) Because it can be solved by a single layer perceptron
 - (d) Because it is the simplest linearly inseparable problem that exists
- (iv) In an Unsupervised learning
 - (a) Specific output values are given
 - (b) Specific output values are not given
 - (c) No specific Inputs are given
 - (d) Both inputs and outputs are given
- (v) Automated vehicle is an example of
 - (a) Supervised learning
 - (b) Unsupervised learning
 - (c) Active learning
 - (d) Reinforcement learning
- (vi) A perceptron adds up all the weighted inputs it receives, and if it exceeds a certain value, it outputs a 1, otherwise it just outputs a 0.
 - (a) True
 - (b) False
 - (c) Sometimes it can also output intermediate values as well
 - (d) Can't say

1:25	mi -		parameter	122	tha	SVIVI	means
(VII)	The	COSL	parameter	III	THE	D A TAT	mound

- (a) The number of cross-validations to be made
- (b) The kernel to be used
- (c) The tradeoff between misclassification and simplicity of the model
- (d) None of the above
- (viii) Which of the following statement is true about k-MN algorithm?
 - (1) k-NN performs much better if all of the data have the same scale
 - (2) k-NN works well with a small number of input variables (p), hut struggles when the number of inputs is very large
 - (3) k-NN makes no assumptions about the functional form of the problem being solved
 - (a) (1) and (2) (b) (1) and (3)
 - (c) Only (1) (d) All of the above
- (ix) Which of the following machine learning algorithm can be used for imputing missing values of both categorical and continuous variables?

(a) K-NN BINA CHOWDHURY CENTRAL LIBRARY (GIMT & GIPS)

- (b) Linear Regression wahati -781017
- (c) Logistic Regression
- (x) k-MN algorithm does more computation on test time rather than train time.

(a) True (b) False

Answer any six of the following questions:

 $(6 \times 15 = 90)$

- 2. (a) What is back propagation? Explain how the weights are propagated back in ANN.
 - (b) What are the popular activation functions? Write equation of any one of them.
 - (c) Prove that the multilayer neural networks are linear without activation function.
 - (d) Explain with example the firing rules of neural networks? (5+3+4+3)
- 3. (a) When should you use classification over regression?
 - (b) What's the "kernel trick" and how is it useful?
 - (c) What is margin in context to support vector machine?
 - (d) Why linear SVM works well for high dimensional problems? (3+4+3+5)
- 4. (a) Which is more important to you— model accuracy.

 or model performance? Justify.
 - (b) Why is naive bayes naive?
 - (c) Write the algorithm of K-Nearest Neighbor for regression.

(d) Using K-Nearest Neighbor, predict the class that X = <3, 8> will take from the following table:

X1:	6	5	4	10	9	10
X2:	1	5	5	7	9	7
Y:	1	1	1	0	0	0

5. (a) Given are the points A = (1, 2), B = (2, 2), C = (2, 1), D = (-1, 4), E = (-2, -1). F = (-1, -1). Starting from initial clusters Cluster 1 = {A} which contains only the point A and Cluster 2 = {D} which contains only the point D, run the K-means clustering algorithm and report the final clusters. Use L1 distance as the distance between points which is given by

$$d((x1, y1), (x2, y2)) = |x1 - x2| + |y1 - y2|$$

- (b) What are the different types of hierarchical clustering algorithms? Explain with example.
- (c) State the advantages and disadvantages of hierarchical clustering algorithms. (8 + 4 + 3)
- 6. (a) What is linear regression? Write the simplest form of the regression equation with one dependent and one independent variable.
 - (b) One end A of an elastic string was attached to a horizontal bar and a mass, m grams, was attached to the other end B. The mass was suspended freely and allowed to settle vertically below A. The length AB. l mm, was recorded, for various masses as follows:

m:	100	200	300	400	500
l:	228	236	256	278	285

- (i) Calculate the least squares line of regression of 1 on m and plot this line on graph along with the above points.
- (ii) Estimate the length of the string when a mass of 360 grams is attached at B.
- (c) Write a function in any language to calculate the Root Mean Squared Error. (4+8+3)
- 7. (a) How do you handle missing or corrupted data in a dataset? Give an example using any language of your choice.
 - (b) State the different properties of distance.
 - (c) What is object-by-object representation of data? Give an example.
 - (d) The following is information about three patients. Find the pair most similar.

Name	fever	cough	test-1	test-2	test-3	test-4
a	Y	N	P	N	N	N
b	Y	N	P	N	P	N
c	Y	Y	N	N	N	N

$$(4+2+2+7)$$

- 8. (a) What is Laplacian correction? Give an example.
 - (b) How is information gain (or entropy) of a dataset calculated?

(c) Using Naïve Bayesian Classification find the class that x takes from the following dataset:

	Gender	Age	BP	Drug	
	M	young	Normal	Α	
	F	senior	Normal	В	
	M	midAge	High	A	
7004 L1890	M	midAge	Low	В	
The state of	_b . F	midAge	High.	A	
502	M	young	Normal	A	
ACHOMOHURY CA	F	senior	Normal	В	
ACHOMOHUPY CENTRALL	M	midAge	Low	В	
	M	senior	Normal	В	
	F	midAge	Normal	A	
	F	young	Low	В	
	M	senior	High	A	
x = < 1	M, young, l	High>			(3+4+8)

- 9. (a) Define the following terms:
 - (i) E-neighborhood
 - (ii) Core object
 - (iii) Directly density-reachable

(b) Give the advantages and disadvantages of DBSCAN algorithm.

(c) Given the following matrix of distances, cluster the cities using single-linkage hierarchical

clustering.

Clustellig.								
	В	F	M	N	R	T		
В	.0	662	877	255	412	996		
F	662	0	295	468	268	400		
M	877	295	0	754	564	138		
N	255	468	754	0	219	869		
R	412	268	564	219	0	669		
T	996	400	138	869	669	0		

(6+4+5)