MA	1	81	21	02
4144	_	UL	-	UF 200

Roll No. of candidate

2022

(GIMT & GIPS)
Azara, Hatkhowapara,
Guwahati -781017

B.Tech. 2nd Semester End-Term Examination

MATHEMATICS - II

(New Regulation & New Syllabus (Group B))

Full Marks - 70

Time - Three hours

The figures in the margin indicate full marks for the questions.

Answer question No. 1 and any four from the rest.

1. Choose the appropriate answers:

- $(10 \times 1 = 10)$
- (i) The directional derivative of f = xy + yz + zx in the direction of $\hat{i} + 2\hat{j} + 2\hat{k}$ at the point (1,2,0) is
 - (a) $\frac{10}{3}$

(b) $\frac{1}{2}$

(c) $-\frac{10}{3}$

- (d) None of these
- (ii) The tangent plane to the surface $xz^2 + x^2y z + 1 = 0$ at the point (1, -3, 2) is
 - (a) 2x+y+3z+1=0
- (b) 2x-y-3z+1=0
- (c) -2x+y+3z+1=0
- (d) None of these
- (iii) The magnitude of the vector drawn in a perpendicular to the surface $x^2 + 2y^2 + z^2 = 7$ at the point (1, -1, 2) is
 - (a) $\frac{2}{3}$

(b) $\frac{3}{2}$

(c) 6

- (d) None of these
- (iv) The general solution of the differential equation $py=p^2(x-b)+a$ is
 - (a) $y^2 = 4\alpha (x-b)$
- (b) $cy = c^2(x-b) + a$
- (c) y = (x-b) + a
- (d) None of these

- The integrating factor of the differential equation $\cos x \frac{dy}{dx} + y \sin x = 1$ is
 - (a) tanx

(b) cosx

(c) $\sin x$

- (d) sec x
- (vi) A particular solution of $\frac{d^2y}{dx^2} + \frac{dy}{dx} 2y = 0$ when x = 0, y = 3
 - (a) $y = Ae^x + Be^{-zx}$
- (b) $y = 2e^x + e^{-2z}$
- (c) $y = ce^{x} + (3-c)e^{-2x}$ (d) None of these
- (vii) The integral $\int x J_0(x) dx$ is equal to
 - (a) $x J_1(x) J_0(x)$
- (b) $xJ_1(x)$

(c) $J_1(x)$

(d) None of these

(viii) The function $f(z) = \overline{z}$ is

- analytic at the origin.
- analytic at all points in the complex plane (b)
- not analytic at any point in the complex plane (c)
- analytic at finite number of point in the complex plane
- The Cauchy-Riemann equation in polar form is given by

(a)
$$\frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial \theta}, \frac{\partial u}{\partial \theta} = -r \frac{\partial v}{\partial r}$$

(b)
$$\frac{\partial u}{\partial r} = -\frac{1}{r} \frac{\partial v}{\partial \theta}, \frac{\partial u}{\partial \theta} = r \frac{\partial v}{\partial r}$$

(c)
$$\frac{\partial u}{\partial r} = r \frac{\partial v}{\partial \theta}, \frac{\partial u}{\partial \theta} = -\frac{1 \partial v}{r \partial r}$$

- (d) None of these
- Let f(z) is analytic at all points interior to a rectifiable non-intersecting closed curve C except at the points at z=1 and z=3, the residues of f(z) at these are -1 and 2 then the value of $\oint f(z) dz$ is equal to
 - $4\pi i$ (a)

 $2\pi i$

 $8\pi i$ (c)

(d) 2π

- 2. (a) A particle moves along the curve $x=2t^2$, $y=t^2-4t$ and z=3t-5 where t is the time. Find the components of velocity and acceleration at time t=1 in the direction of $\hat{i}-3\hat{j}+2\hat{k}$. (4)
 - (b) Find a unit vector normal to the surface $x^3 + y^3 + 3xyz = 3$ at the point (1,2,-1).
 - (c) Find the work done in moving a particle in the force field $\vec{F} = 3x^2\hat{i} + (2xz y)\hat{j} + 2\hat{k}$ along the curve defined by $x^2 = 4y$ and $3x^3 = 8z$ from x = 0 to x = 2.
 - (d) Show that the vector $\vec{v} = (x+3y)\hat{i} + (y-3z)\hat{j} + (x-2z)\hat{k}$ is solenoidal. (3)
- 3. (a) Find the differential equation of all circles touching the axis of y at the origin and centres on the axis of x. (3)
 - (b) Solve any 3 (three) of the following equations: $(3 \times 4 = 12)$
 - (i) $x(1-x^2)\frac{dy}{dx} + (2x^2-1)y = x^3$
 - (ii) $x\frac{dy}{dx} + y = x^3 y^6$ BINA CHOWDHLRY CENTRAL LIBRARY

 (GIMT & GIPS)

 Azara, Hatkhowapara,
 Guwahati -781017
 - (iii) $\left(1 + e^{\frac{x}{y}}\right) dx + e^{\frac{x}{y}} \left(1 \frac{x}{y}\right) dy = 0$
 - (iv) $y = 2 p x + y^2 p^3$
 - (v) (px-y)(py+x)=2p.
- 4. (a) Evaluate $\int_{S} \vec{A} \cdot \hat{n} \, ds$ where $\vec{A} = (x + y^2)\hat{i} 2x \, \hat{j} + 2yz\hat{k}$ and S is the surface of the plane 2x + y + 2z = 6 included in the first octant. (6)
 - (b) Use divergence theorem of Gauss to evaluate $\int_S \vec{F} \cdot \hat{n} \, ds$ where $\vec{F} = x^3 \, \hat{i} + y^3 \, \hat{j} + z^3 \, \hat{k}$ and S is the surface of the sphere $x^2 + y^2 + z^2 = a^2$. (6)
 - (c) Solve the differential equation

$$y = 2px - p^2 \tag{3}$$

- 5. (a) Show that the function $f(z) = \frac{x^3(1+i) y^3(1-i)}{x^2 + y^2}$ when $z \neq 0$ and f(0) = 0 is not analytic at the origin, although Cauchy-Riemann equations are satisfied at the origin.
 - (b) Prove that $u=x^3-3xy^2$ is a harmonic function. Determine its harmonic conjugate and then find the corresponding analytic function f(z) in terms of z.
 - (c) Under the transformation $w = \frac{1}{z}$, find the image of |z 2i| = 2. (5)
- 6. (a) State Cauchy's Integral formula and hence evaluate $\oint_C \frac{e^{2x}}{(z+1)^4}$ where C is the circle |z|=2. (1+4=5)
 - (b) Expand f(z) using Laurent's series valid for the following regions where $f(z) = \frac{1}{(z+1)(z+3)}$
 - (i) |z| > 3 (ii) 0 < |1+z| < 2 (5)
 - (c) Solve the differential equation $\frac{d^2y}{dx^2} 5\frac{dy}{dx} + 6y = e^x \cos 2x.$ (5)
- 7. (a) Find the power series solution of $(1-x^2)\frac{d^2y}{dx^2} 2x\frac{dy}{dx} + 2y = 0$ about x = 0. (7)
 - (b) Evaluate any two of the following integrals: (2
 - (i) $\oint_C \frac{e^x}{\cos \pi z} dz$ where C is the circle |z|=1
 - (ii) $\int_0^{2\pi} \frac{d\theta}{2 + \cos\theta}$
 - (iii) $\int_0^\infty \frac{dx}{x^4 + 1}.$

BINA CHOWDHURY CENTRAL LIBRARY
(GINT & GIPS)
Azara, Halkhowepara,
Guwahall -781017