Total No	o. of printed pages = 4					
EC 131403 BINA CHOWDHURY CENTRAL LIBRAR (GIMT & GIPS) Azera, Hatkhewap (Guwahati -78101)						
Roll No.	of candidate					
2019						
B.Tech. 4th Semester End-Term Examination						
DIGITAL ELECTRONICS						
(New Regulation)						
	(w.e.f. 2017-2018)					
Full Marks – 70 Time – Three hours						
The figures in the margin indicate full marks for the questions.						
Answ	ver Question No. 1 and any four from the rest.					
1. Cho	ose the correct answer: $(10 \times 1 = 10)$					
(i)	A NAND gate becomes — gate when used with negative logic.					
	(a) AND (b) OR					
	(c) XOR (d) NOR					
(ii)	When a negative number is represented in binary using sign-magnitude representation, the left most bit it called — bit.					
	(a) Mantissa (b) Complement					

(d)

Magnitude bit

[Turn over

Sign bit

(c)

(iii)		h one of the 4bit labers of illegal sta		odes has
	(a)	1	(b)	2
	(c)	4	(d)	6
(iv)	The roll	number of bits numbers to a	requir	ed to assign binary of 90 students is
	(a)	5	(b)	6
	(c)	7	(d)	8
(v)	comp	ariable present is olemented or u vn as	n a Bo uncomp	polean expression in plemented form is
	(a)	Logic	(b)	Literals
	(c)	SOP	(d)	All of the above
(vi)	Whi	ch logic gate is a	basic c	omparator?
	(a)	NOR	(b)	NAND
	(c)	XNOR	(d)	XOR
(vii)		rter to each inpu		uced by adding an output of an AND
	(a)	NOR	(b)	NAND
	(c)	XOR	(d)	OR
(viii)	The	NAND gate can f	unctio	n as NOT gate if
	(a)	All inputs are con	nnecte	d together
	(b)	Inputs are left op	en	
	(c)	One input is set	to 0	
	(d)	One input is set	to 1	
EC 13140	3	2		

	(ix)	The code used for labeling the cells of K-map is
		(a) BCD (b) Hexadecimal
		(c) Gray (d) Binary
	(x)	is the fastest logic families.
		(a) ECL (b) RTL
		(c) TTL (d) CMOS
2.	(a)	Represent $(307.46)_{10}$ in $(5\times1=5)$
		(i) Binary
		(ii) Octal CENTRAL LIBRAN
		(iii) Hexadecimal BINA CHOWDHURY CENTRAL LIBRAN (GIMT & GIPS)
		(iv) BCD Azara, Hatkhowapara, Guwahati -781017
	3	(v) Gray
	(b)	Subtract (5E) ₁₆ from (2A) ₁₆ using 2's complement method. (4)
	(c) .	Perform the addition of numbers (297) ₁₀ and (384) ₁₀ in BCD code. (3)
	(d)	Find the base x, if $(292)_{10} = (204)_x$ (3)
3.	(a)	Reduce the Boolean expression using Boolean
		algebra. $Y = A \left[B + \overline{C} \left(\overline{AB + A\overline{C}} \right) \right]$ (5)
	(b)	Convert the following Boolean expression to standard SOP and find its corresponding standard POS form
		$Y(A, B, C) = AB + BC + A\overline{C}. $ (5)
	(c)	Simplify using K-map
		$F = \sum m (4, 5, 7, 12, 14, 15) + d(3, 8, 10)$ (5)

4.	(a)	Design a full adder. (5)
	(b)	Design a 2 bit comparator circuit. (6)
	(c)	Using only NAND gate design a XOR gate. (4)
5.	(a)	Compare decoder and demultiplexer with suitable diagram. (3)
	(b)	Implement the following expressions using 4:1 multiplexer. $Y(A, B, C) = \sum m (1, 2, 4, 7)$. (5)
	(c)	Simplify the following four variable Boolean function using Quine – McClauskey method.
		$Y(A,B,C,D) = \sum m \ (1, 3, 5, 10, 11, 12, 13, 14, 15)$ (7)
6.	(a)	What is race around condition? How it can be avoided? (5)
	(b)	Design a D flip flop using JK flip flop. (4)
	(c)	Describe the working of Universal Shift Register. (6)
7.	(a)	A counter goes through states 0, 3, 5, 6, 0, 3, Design the counter using T flip flop. (6)
	(b)	Define:
		(i) Noise margin
		(ii) Speed power product. (4)
	(c)	Describe the working of CMOS inverter. (5)