Total No. of printed pages = 4

EC 131407

BINA CHOWDHURY CENTRAL LIBRAKI

Roll No. of candidate

Azera, Hatkhowspere, Guwahati -781647

2019

B.Tech. 4th Semester End-Term Examination INTRODUCTION TO DIGITAL ELECTRONICS

(New Regulation)

(w.e.f. 2017-18)

Full Marks - 70

Time - Three hours

The figures in the margin indicate full marks for the questions.

Answer question No. 1 and any four from the rest.

1. Answer the following:

 $(10 \times 1 = 10)$

- (a) What do you understand by the term 'digital'?
- (b) What do you mean by logic design?
- (c) 0111 is an excess-3 of _____?
- (d) Realize the logical expression $Y = \overline{A \oplus B}$ and name the gate.
- (e) Find the decimal equivalent of the binary number (1111) assuming sign magnitude representation of binary number.
- (f) Represent (-17)₁₀ in 2's complement form.
- (g) What is the BCD equivalent of 57?

- (h) is the fastest logic family.
- (i) _____ is a binary cell capable of storing one bit Information.
- (j) Define the term 'fan-out'.
- 2. (a) Convert $(101101.10101)_2 = ()_{10}$ $(5 \times 3 = 15)$
 - (b) Convert $(10.625)_{10} = ()_2$
 - (c) Convert $(675.625)_{10} = ()_{16}$
 - (d) Convert $(A72E)_{16} = ()_8 = ()_2$
 - (e) Convert $(3287.5100098)_{10} = ()_8$.
- 3. (a) Convert the following Boolean function into standard POS and express it in terms of maxterm. $(5 \times 3 = 15)$

$$Y(A, B, C) = (A+B)(B+\overline{C})(A+C)$$

- (b) Prove De-Morgan's Theorems.
- (c) Minimize:

$$y = \overline{x\overline{y} + xyz} + x(y + x\overline{y})$$

- (d) Perform using 2's complement method (use 8-bit representation): 48-23
- (e) Perform $(26)_8 (75)_8$.
- 4. (a) Simplify using Quine-McCluskey method. (10 + 5 = 15)

$$Y(A, B, C, D) = \sum m(1, 2, 3, 5, 9, 12, 14, 15) + d(4, 8, 11)$$

(b) Minimize using K-map:

$$f(A, B, C, D) = \sum m(1, 5, 7, 8, 9, 10, 11, 14, 15) + d(2, 12, 13)$$

5.	(a)	Draw the full-adder circuit using two half-adders. Also realize the circuit using only NAND gates. (2+3=5)
	(b)	Implement the following logic function using 4:1 MUX (4)
		$F(A, B, C) = \sum m(1, 2, 4, 7)$
	(c)	Design a parity general or to produce digital word with even parity. Assume the inputs to be three bit binary word. (3)
	(d)	What is a magnitude comparator? Describe a logic diagram for a 1-bit magnitude comparator. (3)
6.	(a)	Name some applications of counter. (2)
	(b)	What is a universal shift register? (2)
	(c)	Define the terms:
		Define the terms: (i) propagation delay (GIMT & GIPS) Azera, Hatkhowapara,
		(ii) figure of merit. Azera, Hatkhowepara, Guwahati -761617
	(d)	For an S-R flip-flop, what will be output if input changes from: (2)
		(i) $S = 1$, $R = 0$ to $S = R = 0$
		(ii) $S = 0$, $R = 1$ to $S = R = 0$
	(e)	Explain the terms: Modulus of a counter, Down-counter. (2)
	(f) ·	(i) What is a flip-flop? (5)
		(ii) Why $S = R = 1$ is not permitted in the S-R flip-flop?
		(iii) What is race-around condition in J-K flip-flop?
		(iv) Explain the operation of Master-slave J-K flip-flop.

- 7. (a) What are the different modes of operation of shift register? Explain the operation of a register in PIPO mode. (5)
 - (b) Compare the performance of TTL, CMOS and ECL logic. (5)
 - (c) Write short notes on (any one): (5)
 - (i) programmable logic array
 - (ii) binary codes.

BINA CHOWDHURY CENT CONTROL (GINT & GIPS)

Azara, Hatkhowapara,
Guwahati -781917