Total No. of printed pages = 4

EC 1318 E 054

BINA CHOWDHURY CENTRAL LIBRARY (GIMT & GIPS)

Roll No. of candidate

Azara, Hatkhowapara, Guwahati -781017

2019

B.Tech. 8th Semester End-Term Examination ANTENNA AND WAVE PROPAGATION – ELECTIVE V (OPEN)

Full Marks - 100

Time - Three hours

The figures in the margin indicate full marks for the questions.

Answer Question No. 1 and any six from the rest.

1. Answer the following questions:

 $(10 \times 1 = 10)$

- (i) The unit of magnetic scalar potential is -----
 - (a) Volts
 - (b) Ampere
 - (c) Weber
 - (d) Henry
- (ii) The unit of poynting vector is
 - (a) Watts
 - (b) watts/m
 - (c) watts/m2
 - (d) watts/m3
- (iii) A field can exist if it satisfies
 - (a) Gauss's law
 - (b) Faraday's law
 - (c) Coulomb's law
 - (d) all Maxwell's equations

[Turn over

(iv)	For	a 300Ω antenna operating with 5A of rent, the radiated power is	
		7500 W	
		750 W	
		75 W	
		1500 W	
(v)	5 5N	current distribution in a half-wave dipole is	
		- a nan-wave dipole is	
	(a)	Constant	
	(b)	Sinusoidal	
	(c)	Triangular	
	(d)	Ramp	
(vi)) Basic transmission loss between two antendepends on ————.		
	(a)	Frequency	
	(b)	Distance	
	(c)	Frequency and distance	
V - 19	(d)	Gain of antennas	
(vii)	In an end-fire array, there exists no radiation at to the axis of the array.		
(viii)	The	side lobes of the patterns of	
	Dolp	h-Tchebysheff amplitude distribution are -	
	(a)	At equal levels	
	(b)	At different levels	
(ix)	Rhor	mbic antenna is	
	(a)	Travelling wave antenna	
	(b)	Standing wave antenna	
	(c)	Narrow-band antenna	
	(d)	Used in LF bands	
0101			

	(x)	Critical frequency of the ionospheric layer is —
		(a) $f_c = 81\sqrt{N_{\text{max}}}$
		(b) $f_c = 81 \text{ N}_{\text{max}}$ BINA CHOWDHURY CENTRAL LIBRAR
		(c) $f_c = 9\sqrt{N_{\text{max}}}$ (Givi & Givi)
		(d) $f_c = 9 N_{\text{max}}$ Guwahati -781017
2.	(a)	State and prove equation of continuity for time- varying fields. [5]
	(b)	State and explain each Maxwell's equations. [4]
	(c)	Establish the relation between E and H. [6]
3.	(a)	Define Antenna. How compensation theorem is applied in it? [4]
	(b)	Define the antenna parameters: [6]
		(i) Effective Length of Antenna
1		(ii) Radiation Resistance -
		(iii) Antenna Efficiency
	(c)	Find the radiation efficiency of a Hertzian dipole of length 0.03λ at a frequency of 100MHz if the loss resistance is 0.01Ω . [5]
4.	(a)	Briefly explain the Friis Transmission formula.
		[5]
	(b)	If a electric field at a far zone point 5km distance from an aerial is 10m V/m. What is the value at a point 10km away in the same direction? [4]
	(c)	
1		End-fire arrays with neat diagrams. [6]

5.	(a)	Derive the radiation pattern for an array of two isotropic point sources with equal amplitude and opposite phase. [7]
	(b)	Briefly explain the pattern of multiplication. And derive the radiation pattern of 8 – isotropic elements fed in – phase, spaced $\lambda/2$ apart. [8]
6.	(a)	Design a Rhombic antenna to operate at a frequency of 30 MHz with the angle of elevations, $\Delta = (i)25^{\circ}$, (ii) 30° [6]
	(b)	Design a Yagi-Uda antenna of 5 elements to provide a gain of 10 dBi if the operating frequency is 219.5 MHz. [5]
	(c)	Briefly describe the construction and operation of a Helical antenna. [4]
7.	(a)	List the factors involved in the propagation of radio waves. [5]
	(b)	Briefly explain any five characteristic parameters of ionospheric propagation. [5]
	(c)	What is fading? List its types. Briefly explain any three of its types. [5]
8.	(a)	Classify antennas into different categories. [5]
	(b)	Give the advantages and disadvantages of microstrip patch antennas. [5]
	(c)	A parabolic antenna having a circular mouth is to have a power gain of 1500 at $\lambda = 15$ cm.
		Estimate the diameter of the mouth and the
		half power beam-width of the antenna. [5]
9.	Brie	efly explain the following: $(5 \times 3 = 15)$
	(a)	Capture Area
	(b)	Non-Resonant Antenna
1	(c)	
	(d)	
	(e)	Relation between Directivity and Effective Aperture.