MA 131401 NR Roll No. of candidate CALLHERARY BINA CHOWL 2022 Azaro, Haudiaya para, Guwahan -781017 B.Tech. 4th Semester End-Term Examination NUMERICAL METHODS AND COMPUTATION (New Regulations)

Full Marks - 70

Time - Three hours

The figures in the margin indicate full marks for the questions.

Answer Question No. 1 and any Four from the rest. Choose the correct answer from the following: $(10 \times 1 = 10)$ Round off to the four significant digits of the number 8.203524 is (a) 8.203 (b) 8.204 8.2035 (d) none of these Which of the following is a true relation? (a) $\Delta = 1 - E$ $\nabla = 1 - E^{-1}$ (c) $\Delta \nabla = \Delta - \nabla$ (d) none of these

- (iii) If x = 5, what is Δx ?
 - (a) 0

(b)

(c) 3

- (d) 4
- (iv) If $y = ax^3$, then for h = 1, $\Delta^2 y$ is
 - (a) 0

(b) 6a

(c) 6ax

- (d) a
- (v) The error in composite Trapezoidal rule with n interval is
 - (a) $-\frac{h^2}{12}(b-a)f''(x)$

(b) $-\frac{h^3}{12}(b-a)f''(x)$

(c) $-\frac{h^4}{180}(b-a)f^{iv}(x)$

(d) none of these

(vi)	In S	Simpson's $\frac{1}{3}$ rule	the cu	irve	y =	f(x)	is app	proximated a	is	
	(a)	straight line				(b)	secon	nd degree cu	rve	
	(c)	third degree cu	rve			(d)		th degree cu		
(vii)	Nev	vton-Raphson m	ethod	is giv	en l	ру				
		$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$	2			1900	x_{n+1}	$=x_n+\frac{f(x_n)}{f'(x_n)}$)	
	(c)	$x_{n+1} = \frac{x_n f(x_n)}{f(x_n)}$	$\left(-\frac{1}{x}\right) - x$	$\binom{n-1}{n-1}$	(n)	(d)		of these		
(viii) Gau	ss elimination n	nethod	lis						
	(a)	an iterative me	thod			(b)	non-	iterative me	thod	
	(c)	a diagonal met	hod			(d)	matr	rix inversion	method	
(ix)		(a)f(b) < 0 in b ral whose length		n me	etho	d aft	er n i	interation, t	he root lie	s in the
	(a)	$\frac{b-a}{2}$				(b)	$\frac{b-a}{2^n}$			
	(c)	$\frac{(b-a)^n}{2}$				(d)	$\left(\frac{b-2}{2}\right)$	a) ⁿ	WAS C	OF LOSE
(x)	Erro	or in modified E	ıler's ı	neth	od is	1		BINACHO	VERLEY PARTIES	81013
	(a)	$O(h^2)$				(b)	$O(h^3$)	Gana	
	(c)	$O(h^4)$				(d)	$O(h^5)$)		
(a)		nd the numbers 22718.	to fou	r sig	nific	cant	figure	s: 2.30456,	23.40056,	3,42635, (4)
(b)	Prov	we that $\Delta^n y_r = \nabla$	" y + + n							(5)
(c)		the missing ter			foll	owin	g data	1:		(6)
10.00			x:	23 DETE	3		5			
	×.		y: -	1 3	-	53	111			
								-		
(a)	Prov	we that $\Delta^3(1-x)$	1-2x	(1 - 3)	x) =	-36	(h = 1).		(4)
(b)	The	time period of	a si	mple	per	nduli	um is	given by	$T=2\pi\sqrt{\frac{l}{g}}.$	If l is
	incr	eased by 2% and	g is in	ncrea	sed	by 2	% find	the percent	age change	
										(5)

f(6) = 195, f(9) = 896.

2.

3.

Find f(2) for the curve y = f(x) that takes values f(0) = 3, f(3) = 18,

(6)

 (a) Find the Lagrange's formula, the interpolation polynomial which corresponds to the following data;
 (7)

30 C	-1	0	2	5
y i	9	-5	3	15

(b) Find the interpolation y = f(x) by Newton's divided difference formula for the following data and hence find f(6): (6+2=8)

x:	1	2	-4	
у:	3	-5	4	

(a) Use Trapezoidal rule to evaluate $\int_0^x x^3 dx$ considering 5 sub-intervals correct to two decimal places. Also determine the error using formula. (5 + 3 = 8)

(b) Evaluate
$$\int_{0}^{1} \frac{dx}{1+x^2}$$
 using Simpson's $\frac{1}{3}$ rule. (7)

- 6 (a) Find the cube root of 20 by Newton-Raphson method.
 - (b) Using bisection method find the root of the equation $x^3 + x + 1 = 0$. (5)

(5)

- (c) Find a real root of the equation $x \log_e x 2 = 0$ by Regula False Method. (5)
- 7. (a) Using Gauss-Jordan method, solve the system of equation. (7) x + 2y + z = 8;

$$2x + 3y + 4x = 20$$
; BINA CHOVERILEY CONTRACT (SIMPLE)
 $4x + 3y + 2x = 16$ Azoro, Halkhowspons,

(b) Solve $\frac{dy}{dx} = 2x + y$, y(1) = 2 by 4th order Runge-Kutta method at x = 1.2. (8)

Solve $\frac{dy}{dx} = \frac{y}{x} + 1$, y(1) = 2 at x = 1.2 by Euler's predictor-corrector formula.