EE 18180E41

Roll No. of candidate

2022

B.Tech. 8th Semester End-Term Examination

RELIABILITY ENGINEERING

(New Regulation)

Full Marks - 70

Time - Three hours

The figures in the margin indicate full marks for the questions.

Answer question No. 1 and any four from the rest.

1. Choose the correct answer from the following:

 $(10 \times 1 = 10)$

- (i) If an event A depends on another event B then $P(A \mid B)$ equal to
 - (a) $P(A) \cdot P(B)$
 - (b) $P(A \cup B)/P(B)$
 - (c) $P(A \cap B)/P(A)$
 - (d) $P(A \cap B)/P(B)$
- (ii) The mean value of a continuous density function f(x) is

(a)
$$E(x) = \int_{-\infty}^{\infty} f(x) dx$$

(b)
$$E(x) = \int_{-\infty}^{\infty} x f(x) dx$$

(c)
$$E(x) = \int_{-\infty}^{\infty} x^2 f(x) dx$$

(d)
$$E(x) = \sum_{-\infty}^{\infty} x f(x)$$

- (iii) The main reason for the failure of different light bulbs at different times is due to
 - random life of bulbs
 - infant mortality of bulbs (b)
 - poor quality of bulbs (c)
 - (d) wear-out of bulbs.
- (iv) If the overall reliability of a sys tem is the product of individual reliabilities of components then the system is a

BINA CHOWDHURY CENTRAL LIBRARY

Azara, Halkhowapara,

Guwahati -781017

- series system (a)
- parallel system (b)
- series-parallel system (c)
- parallel-series system.
- If the number of components that fail in time t is N_f out of N, the hazard rate is given by

(a)
$$\frac{dN_f}{dt}$$

(b)
$$\frac{d(N-N_f)}{dt}$$

(c)
$$-\frac{dN_f}{dt}$$

(d)
$$\frac{1}{N-N_f} \frac{dN_f}{dt}$$

- (vi) The hazard rate function for an exponential failure density function
 - increases with time (a)
 - (b) decreases with time
 - is constant with time (c)
 - none of the above

- (vii) The mean time to failure (MTTF) of a two-component parallel system with identical failure rate λ is
 - (a) 2λ
 - (b) 2/2
 - (c) 1/2\(\lambda\)
 - (d) 3/2λ
- (viii) In case of Weibull distribution if the shape parameter $\beta = 1$ the density function becomes
 - (a) Exponential

BINA CHOWDHURY CENTRAL LIBRARY (GIMT & GIPS) Azara, Hatkhowapara, Guwahati -781017

- (b) Rayleigh
- (c) Normal
- (d) Uniform distribution
- (ix) In Markov process the failure rate of a component is assumed as
 - (a) time dependent
 - (b) constant
 - (c) both (a) and (b)
 - (d) none of the above
- (x) If the constant failure and repair rate of a component/system are λ and μ respectively then the steady-state availability is
 - (a) $\frac{\lambda}{\lambda + \mu}$
 - (b) $\frac{\mu}{\lambda + \mu}$
 - (c) $\frac{1}{\lambda} + \frac{1}{\mu}$
 - (d) $\lambda + \mu$

- 2. (a) Define reliability. Identify the key elements in the definition.
 - (b) What is bath-tub curve? Draw a typical bath-tub curve and identify the regions. (4)
 - (c) State the differences between mission oriented systems and continuously operated systems. (4)
 - (d) What do you mean by failure of engineering system? State few causes of failure of such system.

 BINA CHOWDHURY CENTRAL LIBRARY (4)

Azara, Hatkhowapara,

(3)

- 3. (a) State and explain total probability theorem. Guwahati -781017 (5)
 - (b) The cumulative distribution function for a random variable T is given by $F(t) = 1 e^{-0.001t}.$ (5)

Determine probability density function f(t) and its mean. Also roughly sketch F(t) and f(t).

- (c) In an experiment, 10 components are tested. If the failure probability of each component is 0.02, what is the probability that (i) exactly 10 components are in operating condition and (ii) at least 5 components are in failed condition?
- 4. (a) Derive expressions for reliability of the system shown in Fig. 1 for the given conditions (i) and (ii) R_A, R_B and R_C are the reliabilities of components. (8)

- (i) Components A, Band C are non-identical and at least one component of this group must be available for system success.
- (ii) Components A, Band C are identical and at least two out of the three components functions satisfactorily for system success.

- (b) Evaluate reliability of the complex system shown in Fig. 2 using anyone of the following methods. R1 , R2, R3 and R4 are the reliabilities of components where R1 = 0.90, R2 = 0.85 and R3 = 0.92 and R4 = 0.95
 - (i) Decomposition method (conditional probability approach)
 - (ii) Cut set method.

 BINA CHOWDHURY CENTRAL LIBRARY

 (GIMT & GIPS)

 Azara, Halkhowapara,

 Guwahati -781017

 (7)
- 5. (a) What is meant by hazard rate? How it is different from failure rate? (2)
 - (b) The hazard rate of a system is given by λ(t)) = 0.004 + 0.0016t where t is in hours. (i) Derive reliability function, R(t) and failure density function, f(t).
 (ii) Evaluate reliability of the system at 10 hours and the design life to maintain a reliability of 0.90.
 - (c) The life of a bearing is normally distributed with a mean value of 2000 hours and a standard deviation of 100 hours. What is the probability that the bearing fails before 1850 hours?

 (3)
 - (d) An electronic circuit consists of 6 transistors each having a failure rate of 10.6 f/hr, 4 diodes each having a failure rate of 0.5 × 10-6 f/hr, 3 capacitors each having a failure rate of 0.2 × 10-6 f/hr, 10 resistors each having a failure rate of 5 × 10-6 f/hr and 2 switches each having a failure rate of 2 × 10-6 f/hr. Assuming connections and wiring are 100% reliable, evaluate the equivalent failure rate of the system and the probability of the system surviving 1000 hour if all components must operate for system success. (5)
- 6. (a) What is a fault tree? Draw fault tree for a series system having three non identical components. (3)
 - (b) A system consists of a primary unit and a standby unit with identical failure rate λ. Derive the reliability expression for the system assuming 100% reliable switches. Also derive expression for Mean-Time-To-Failure (MTTF) of standby system.
 - (c) Develop state-space diagram and stochastic transitional probability matrix for a repairable system having two non-identical components with failure rates λ_1 , λ_2 and repair rates μ_1 and μ_2 . (6)

7. (a) Define availability and maintainability.

- (2)
- (b) State the difference between preventive and corrective maintenance. (2)
- (c) A system is maintained at equal time interval T. Develop a maintenance based reliability model for the system. (7)
- (d) A system is maintained at equal time interval of 1 year. If the failure characteristic of the system is exponentially distributed with constant failure rate of 0.1 f/yr then find the reliability of the system after 5 years with and without maintenance.

 BINA CHOWDHURY CONTROL LIBRARY (4)

(GIMT & GIP3)
Azara, Hatkhowapara,
Guwahati -781017