July, 2023

Total No. of printed pages = 4

R	P	6	04	T
			V 45 3	

Roll No. of candidate	-			,		٠	
	_						

Bina Chowdhury Central Library Girijananda Chowdhury University Hatkhowapara, Azara, Ghy-17

2023

B.Pharm. 6th Semester End-Term Examination

BIOPHARMACEUTICS AND PHARMACOKINETICS THEORY

(New Regulation w.e.f. 2017-18)

Full Marks - 75

absorption is

 C_{max}

AUC

(a)

(c)

Time - Three hours

		Th	e figures in the margin in	idicate fi	all marks fo	or the quest	ions.			
			Question number 1 is con	mpulsor	y. Answer a	all question	s.			
1.	Cho	ose th	ne right answer from the f	following	g:		(20 × 1 =	20)	
	(i) I	Orugs	having structure sim	ilar to	essential	nutrients	are	known	as	
		(a)	Ideal drugs	(b)	True nu	trients				
		(c)	False nutrients	(d)	Essentia	al drugs				
	(ii)	The order for dissolution of different solid forms of drugs is ————								
		(a)	Stable>Metastable>Amo	rphous						
		(b)	Metastable>Amorphous	>Stable						
		(c)	Amorphous> Metastable	> Stable						
		(d)	Stable>Amorphous>Met	astable						
	(iii)	Wea	kly acidic drugs having p	Ka >8.0	are					
		(a)	Ionized at GI pH							
		(b)	Better absorbed from the	stomac	h					
		(c)	Absorbed along the entir	e length	of GIT					
		(d)	Ionized at all pH							
	(iv)	The	pharmacokinetic param	eter tha	at gives an	n indication	n of	the rate	of	

(b)

(d)

 T_{max}

Clearance

(v)	The	percentage of drug content	diss	solved in a given time period is
	(a)	Dissolution	(b)	Solubility
	(c)	Intrinsic solubility	(d)	Q value
(vi)		correlation involving one or se unt of drug dissolved at variou		pharmacokinetic parameters to the e points is ————
	(a)	Level A	(b)	Level C
	(c)	Level B	(d)	Multiple Level C
(vii)		ndex of how efficiently the elugh it of drug is————	imina	ating organ clears the blood flowing
	(a)	Clearance	(b)	Extraction ratio
	(c)	Volume of distribution	(d)	Intrinsic capacity clearance
(viii)		ratio of maximum safe co	ncent	tration to the minimum effective
	(a)	Therapeutic window	(b)	Therapeutic range
	(c)	Therapeutic index	(d)	Bioavailability
(ix)		itro dissolution studies can ber certain circumstances know		ed in lieu of in vivo bioequivalence
	(a)	Therapeutic equivalence	(b)	Biowaivers
	(c)	Chemical equivalence	(d)	All of the above
(x)	The	enhancement of action of one	drug l	by another drug is termed as
	(a)	Antagonism	(b)	Potentiation
	(c)	Summation	(d)	Addition
(xi)		major mechanism of drug tra of the blood into tissues is:	nspo	rt involved in the transport of drug
	(a)	Aqueous diffusion	(b)	Lipid diffusion
	(c)	Active transport	(d)	Facilitated transport
(xii)	Noy	es and Whitney equation is use	ed to	describe
	(a)	Absorption	(b)	Dissolution
	(c)	Distribution	(d)	Disintegration
(xiii)) The	volume of distribution of drug	is	
	(a)	An expression of total body vo	olume	
	(b)	A measure of total fluid volur	ne	
	(c)	A relationship between the t concentration of the drug in t		amount of drug in the body and the
	(d)	Proportional to bioavailability	y of tl	ne drug

BP 604 T

	(xiv) The rate of drug bioavailability is most rapid when the thug is formulated as a							
		(a)	Controlled release product	(b)	Hard gelatin capsule			
		(c)	Tablet	(d)	Solution			
	(xv)	Acco	ording to BCS for drugs, a well	-abso	rbed drug falls under			
		(a) -	Class I drugs	(b)	Class II drugs			
		(c)	Class III drugs	(d)	Class IV drugs			
	(xvi)		rate-determining steps in inistered formulations is/are	the	absorption of drugs from orally			
		(a)	Disintegration	(b)	Dissolution			
		(c)	Permeation	(d)	Both (b) and (c)			
(xvii)——— unionized at all pH values and absorption is rapid and independent of GI.								
		(a)	Very weak acids drugs	(b)	Basic drugs in the pH range of 5-11			
		(c)	Stronger basic drugs	(d)	Stronger acidic drugs			
(xviii) Which of the following is responsible for absorption of water soluble dru (a) Globular Protein (b) Lipid partition coefficient								
		(c)	Lipid bilayer	(d)	Concentration gradient			
(xix) AUC is expressed as:								
		(a)	Mcg/ml X hours	(b)	Mcg/ml			
		(c)	Mcg X hours/ml	(d)	None of the above			
	(xx)	xx) According to Henderson-Hasselbach equation, which of the following is correct for weak acids						
		(a)	% drug Ionized = pKa + log (ionized drug/unionized drug)					
		(b)	% drug Ionized = ${10^{(pH-pka)}/1 + 10^{(pH-pKa)}}100$					
		(c)	% drug Ionized {10(PKa-pH/1+10(pH-pKa)} 100					
		(d)	% drug Ionized = pKa + log (unionized drug/ionized drug)					

2. Answer any seven questions:

 $(7 \times 5 = 35)$

- (a) What are the two rate -limiting steps in the distribution of drugs? Discuss physiological barriers to distribution of drugs.
- (b) List the factors influencing renal excretion of drugs. Discuss dose adjustment in renal failure.
- (c) Define elimination half-life. Determine the elimination half-life if a drug is administered by IV Bolus administration.

- (d) Explain volume of distribution. Discuss various methods for studying drug distribution pattern.
- (e) What are the objectives of dissolution profile comparison? Explain model-independent method for comparison of dissolution profile.
- (f) Explain when method of residuals is applied in compartmental modelling and what are the limitations of method of residuals.
- (g) What are pharmacokinetic models? What is the importance and utility of developing such model? Discuss briefly the types of pharmacokinetic models.
- (h) Explain different theories of drug dissolution with relevant equations.
- (i) State the pH-partition hypothesis briefly. What are the limitations of pH-partition hypothesis?
- 3. Answer any two questions:

 $(2 \times 10 = 20)$

- (a) What are the various causes of non-linear pharmacokinetics? Explain the Michaelis Menten equation and estimate Km and Vmax from the equation. (5+5=10)
- (b) Define the term 'drug absorption'. Discuss the various drug transport mechanisms involved in the absorption of drugs? (2+8=10)
- (c) Differentiate between absolute and relative bioavailability. Discuss various methods for measurement of bioavailability. (3+7 = 10)

4