Total	l No.	of pri	inted pa	ges = 3										
CSI	E 18	18 (DE 41			1	3/	1/2	3					
Roll No. of candidate					BINA CHOWDHURY (GIMT 8 2023 Azara, Hatt Guwahati							khowapara		
			В.Т	ech. 8	sth Se	mes	ste	r En	d-T	ern	Exa	amina	ation	
				AF	RTIF	ICL	AL	INT	ELI	LIG	ENC	E		
	(New	Syllabi	us (W.	e.f. 2	017-	-18)	& N	New	Sy	llabı	ıs (W.	e.f. 201	.8-19))
Full	Mark	cs7	0										Time	e – Three hours
		Th	e figures	s in the	mar	gin	ind	icate	ful	l ma	arks f	for the	questic	ons.
			Answ	er que	stion	No.	. 1 a	and a	iny	four	fron	the r	est.	
1.	Choose the correct option or fill the gap: $(10 \times 1 =$													$(10 \times 1 = 10)$
	(i)	In a	n inform	ed sea	rch g	(n) (den	otes						
		(a) Path cost from starting node to a node 'n'												
		(b)	Path co	st from	n the	nod	le to	goa	l no	de				
		(c)	The mi	nimun	n patl	n cos	st s	oluti	on t	hro	ugh '	n'		
		(d)	None o	f these										
	(ii)	Whi	Which of the following is complete but not optimal											
		(a)	Depth	first se	arch									
		(b)	Breath	first s	earch	1								
		(c)	Unifor	m cost	searc	ch					301			
		(d)	None o	f these										
	(iii)	Iterative deepening is												
		(a)	Compl	ete, bu	t not	opti	ima	1 ,						
		(b) Optimal, but not complete												
		(c)	Compl	ete an	d opti	mal								
		(d)	Neithe	er comp	olete,	not	opt	imal	1					
	(iv)													
	(v)		Salar Salar	— is	an ex	am	ple	of dy	nar	nic e	envir	onmer	nt (fill t	he gap)
								4						[Turn over

(vi)	Time complexity of some search algorithms are									
	Time: O(bd), O(bm), O(bd+1), (fill the gap)									
	Tim	ne complexity of Depth first search is:								
(vii)		is an example of memory bounded heuristic.								
	(a)	RBFS								
	(b)	MA*								
	(c) Both (a) and (b)									
	(d)	None of these								
(viii)	The capabilities required by a computer to pass Turing test is									
	(a)	Machine learning								
	(b)	Automated reasoning								
	(c)	Only (a) is sufficient								
	(d)	Both (a) and (b) are required								
(ix)	Which of the following is not a component of a problem?									
	(a)	Initial state								
	(b)	Successor function BINA CHOWDHURY CENTRAL LIBRARY (GIMT & GIPS)								
	(c)	Goal test BINA CHOWDHOLL & GIPS) (GIMT & GIPS) Azara, Hatkhowapara Guwahati - 781017								
	(d)									
(x)	For given statement $\forall x \exists y \text{ loves } (x, y)$, Which of the following is logically true.									
	(a)	There is someone who is loved by everyone								
	(b)	Everybody loves somebody								
	(c)	Someone will be loved by everybody.								
	(d)	Every one will be loved by somebody.								
(a)	What is search space? Discuss a problem to demonstrate search space (e.g water jug problem) $(3 + 7 = 10)$									
(b)	Dif	ferentiate forward and backward reasoning.	(5)							
Dis	cuss	the following in brief with example.	$(5\times3=15)$							
(a)	Ge	Genome								
(b)	Mu	Mutation								
(c)	Cro	oss over								
(d)	Poj	pulation								
(0)	Ch	romosome								

2.

3.

(10)Apply A* algorithm to solve 8-puzzle problem. 4. (a) What is the major demerit of A*? How this shortcoming is addressed. (5)(b) What is a game tree? create a game tree for any two players game. (3+6)5. (a) (6)Apply min-max procedure in this tree. (b) Show the importance of constraint satisfaction problem (CSP). Apply CSP to (a) 6. (5+6=11)solve the following. (4) What is mean-end-analysis? Bill is a white cat. Itot wild has a tail and four legs. Bills eat meat. Brown is 7. a buffalo and it has a tail and four legs. Brown eats grass. Brown's color is white. Cat and buffalo can be either domestic or wild. Penny is a donkey and it consumes grass, penny is domestic. Convert these statements to FOL and (7 + 8 = 15)Prove (or disprove) the following. Penny has a tail and four legs (a) Penny's color is not white (b) Penny does not eat meatiNA CHOWDHURY CENTRAL LIBRARY (c) (GIMT & GIPS) Azara, Hatkhowapara Penny is not wild (d) Guwahati - 781017 $(5 \times 3 = 15)$ Write short notes on the following. 8. Modus ponen and Modus tollen

- Bay's Theorem (b)
- Issues in Hill climbing (c)
- (d) Scripts
- Semantic net (e)