Total No. of printed pages = 4

E	CE	18	14	01

3016/23

Roll No. of candidate

BINA CHOWDHURY CENTRAL LIBRARY

2023

(GIMT & GIPS) Azara, Hatkhowapara Guwahati – 781017

B.Tech. 4th Semester End-Term Examination

LINEAR ALGEBRA AND RANDOM PROCESS

New Regulation (w.e.f. 2017-18) & New Syllabus (w.e.f. 2018-19)

Full Marks - 70

Time - Three hours

The figures in the margin indicate full marks for the questions.

Answer Question No. 1 and any four from the rest.

1. Choose the correct option:

 $(10 \times 1 = 10)$

- (i) Let for a square matrix A, |A|=0. Then which of the following is wrong?
 - (a) A is singular

- (b) A can have a zero row
- (c) A is invertible

- (d) A can have a zero column
- (ii) Let S and T be two subspaces of a vector space V over the field F. Then $S \cup T$ will always a subspace of V(F) if
 - (a) $S \cap T = \phi$
 - (b) S and T contained in each other
 - (c) S has the additive identity of V(F)
 - (d) None of these
- (iii) Which of the following symmetric matrix is positive definite?
 - (a) $\begin{bmatrix} 2 & 3 \\ 3 & 2 \end{bmatrix}$

(b) $\begin{bmatrix} 8 & -2 \\ -2 & 1 \end{bmatrix}$

(c) $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$

(d) $\begin{bmatrix} 2 & -3 \\ -3 & -5 \end{bmatrix}$

	(iv)	Which of the following is a linear map on R ² ?			
		(a) $F(x, y) = (xy, x)$	(b) $F(x, y) = (0, y + 3)$		
		(c) $F(x, y) = (x^2, y)$	(d) $F(x,y) = (x + y, x)$		
	(v)	Let V be a vector space of finite dimension n . Then any $n+1$ or more vectors must be linearly dependent			
		State True/False			
	(vi)				
		(a) $\frac{1}{4}$	(b) 3 BINA CHOWDHURY CENTRAL LIBRARY (GIMT & GIPS) Azara, Hatkhowapara Guwahati – 781017		
		(c) $\frac{1}{2}$	(d) None of these		
(vii) If A and B are independent events. Then					
		(a) $P(A \cap B) = 0$	(b) $P(A \cap B) = P(A) \cdot P(B)$		
		(c) $P(A \cap B) = P(A) + P(B)$	(d) None of these		
	(viii)	(viii) If $T: V \to W$ be any linear transform then, Kernel of T is			
		(a) a subspace of V	(b) a subspace of W		
		(c) not a subspace	(d) none of these		
	(ix)	x) The standard deviation of binomial distribution is			
		(a) np	(b) <i>npq</i>		
		(c) \sqrt{npq}	(d) none of these		
	(x)	If the probability density function of continuous random variable X is given by $f_x(x)=1$; $0 < x < 1$. Then the value of $E(x)$ is			
		(a) $\frac{1}{2}$	(b) $\frac{1}{3}$		
		(c) $\frac{2}{5}$	(d) none of these		
	(a)	Define a vector space. Give two examples. (3			
	(b)	Define subspace of a vector space. Consider the vector space \mathbb{R}^3 (\mathbb{R}). $W = \{(a, b, c) \in \mathbb{R}^3 a = 2b = 3c\}$ be a subset of \mathbb{R}^3 . Check whether W			
4		subspace of R ³ (R).	(3+3=6)		

Determine whether or not the following vectors in \mathbb{R}^3 are linearly independent. (1, -2, 1), (2, 1, -1), (7, -4, 1). (4)

(c)

2.

T:
$$\mathbb{R}^2 \to \mathbb{R}^2$$
 defined by $T(x, y) = (x, x + y, y)$. (2+3=5)

- (b) Suppose u, v, w are linearly independent vectors. Prove that S is linearly independent where $S = \{u + v 2w, u v w, u + w\}$. (5)
- (c) Verify Cayley Hamilton theorem for the matrix $A = \begin{bmatrix} 5 & 3 \\ 2 & 10 \end{bmatrix}$. (5)

4. (a) Find the eigen values and eigen vectors of the matrix
$$A = \begin{bmatrix} 4 & 1 & -1 \\ 2 & 5 & -2 \\ 1 & 1 & 2 \end{bmatrix}$$
.

BINA CHOWDHURY CENTRAL LIBRARY

(GIMT & GIPS)

Azara, Hatkhowapara (2+3=5)
Guwahati - 781017

- (b) Define an inner product space. Give an example. (2+1=3)
- (c) Find M^3 for $M = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 2 & 3 & 0 & 0 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 4 & 5 \end{bmatrix}$ using block matrix multiplication. (5)
- (d) Define orthogonal vectors in an inner product space. Find the value of k so that the vectors u = (1, 2, k, 3) and v = (3, k, 7, -5) in \mathbb{R}^4 are orthogonal. (2)
- 5. (a) In a class 60% of the students are boys and remaining are girls. It is known that the probability of a boy getting distinction is 0.30 and that of girl getting distinction is 0.35. Find the probability that a student chosen at random will get distinction.

Find the marginal density mass functions of X and Y. (5)

- (c) A random variable X has the density function $f(x) = \frac{c}{x^2 + 1}$ where $-\infty < x < \infty$. Find
 - (i) the value of C

(ii)
$$P\left(\frac{1}{3} < x < 1\right)$$
. (5)

- 6. (a) Find the mean and variance of Binomial distribution. (3+3=6)
 - (b) In a normal distribution 31% of the items are under 45 and 8% of the items are over 64. Find the mean and standard deviation of the distribution. (5)
 - (c) Let $T: U \to V$ be a linear mapping show that Kernel of T, ker T is a subspace of U where U are V are vector spaces over the same field F. (4)
- 7. (a) What do you mean by Random Processes? Write briefly about the types of random processes. (2+4=6)
 - (b) In the fair coin experiment, a random process X(t) is defined as follows:

 $x(t) = \cos \pi t$, if heads occur = t, if tails occur BINA CHOWDHURY CENTRAL LIBRARY (GIMT & GIPS) Azara, Hatkhowapara Guwahati – 781017

Find (i) E[x(t)], (ii) $F_x(x, t)$ for t = 0.25, 0.5, 1.

(4)

(c) A dice is tossed and corresponding to the dots $S = \{1, 2, 3, 4, 5, 6\}$. A random process X(t) is formed with the following time functions: (5)

$$X(1, t) = -3, X(2, t) = 1, X(3, t) = 1 - t$$

$$X(4, t) = 1 + t$$
, $X(5, t) = 2 - t$, $X(6, t) = t - 2$

Find $\mu_x(t)$, $E(X^2)$, $\sigma^2_X(t)$, $R_{XX}(t_1, t_2)$.