Total No. of printed pages = 4										
ECE	C 181	6 PE 12								
Roll	Roll No. of candidate									
		BINA CHOWDHURY CENTRAL LIBRARY (GIMT & GIPS) Azara, Hatkhowapara Guwahati – 781017 B.Tech. 6th Semester End-Term Examination								
	OPTICAL FIBER COMMUNUICATION									
	(1	New Regulation (w.e.f 2017-18) & (New Sylalbus (w.e.f 2018-19)								
Full	Mar	ks - 70 Time - Three hours								
		The figures in the margin indicate full marks for the questions. Answer question No. 1 and any Four from the rest.								
1.	Ans	wer the following (MCQ/ Fill in the blanks): $(10 \times 1 = 10)$								
	(i)	Multimode step index fiber has								
		(a) Large core diameter and large numerical aperture								
		(b) Large core diameter and small numerical aperture								
		(c) Small core diameter and large numerical aperture								
		(d) Small core diameter and small numerical aperture								
	(ii)	In optical communication acts as a transmission medium								
		(a) Coaxial cable								
		(b) Waveguide								
		(c) Optical fiber cable								
		(d) None of the above								
	(iii)	A GaAs optical source having a refractive index of 3.2 is coupled to a silica fiber having a refractive index of 1.42. Determine Fresnel reflection at interface in terms of percentage.								
		(a) 13.4%								
		(b) 17.4%								
		(c) 17.6%								
		(d) 14.8%								

(iv)	In single mode fibers, which is the most beneficial index profile?			
	(a)	Step index		
	(b)	Graded index		
	(c)	Step and graded index		
	(d)	Coaxial cable		
(v)	Fibe	er mostly situated in single- wavelength transmission in O-band is?		
	(a)	Low-water-peak non dispersion-shifted fibers		
	(b)	Standard single mode fibers		
	(c)	Low minimized fibers		
	(d)	Non-zero-dispersion-shifted fiber		
(vi)	illui	step index fiber has a coupling efficiency of 0.906 with uniform mination of all propagation modes. Find the insertion loss due to lateral alignment?		
	(a)	0.95 dB BINA CHOWDHURY CENTRAL LIBRARY (GIMT & GIPS)		
	(b)	0.40 dB BINA CHOWDHOK (GIPS) (GIMT & GIPS) Azara, Haikhowapara Guwahati – 781017		
	(c)	0.42 dB		
	(d)	0.62 dB		
(vii) Two joined graded index fibers that are perfectly aligned have reindices $\alpha_R = 1.93$ for receiving fiber $\alpha_E = 2.15$ for emitting fiber. Cathe coupling loss.				
	(a)	0.23 dB		
	(b)	0.16 dB		
	(c)	0.82 dB		
	(d)	0.76 dB		
(viii)	The of _	losses caused due to hydrogen absorption mechanisms are in the range		
	(a)	20 dB/km to 25 dB/km		
	(b)	10 dB/km to 15 dB/km		
	(c)	25 dB/km to 50 dB/km		
	(d)	0 dB/km to 85 dB/km		

	(ix)	What is the Young's modulus of Kevlar, an aromatic polyester?	
		(a) $9 \times 10^{10} \mathrm{NM^{-2}}$	
		(b) $10 \times 10^{10} \mathrm{NM^{-2}}$	
		(c) $12 \times 10^{10} \mathrm{NM^{-2}}$	
		(d) $13 \times 10^{10} \text{NM}^{-2}$	
	(x)	A measure of amount of optical fiber emitted from source that can be coupled into a fiber is termed as	е
		(a) Radiance	
		(b) Angular power distribution	
		(c) Coupling efficiency	
		(d) Power – launching	
2.	(a)	Define the following terms with respect to optical laws: (5)
		(i) Reflection	
		(ii) Total internal reflection	
		(iii) Refractive index BINA CHOWDHURY CENTRAL LIBRARY (GIMT & GIPS)	
		(iv) Snell's law Azara, Halkhowapara Guwahati – 781017	
		(v) Critical angle	
	(b)	Derive an expression for number of modes exists in step indexed fiber. All explain about mode filed diameter.	so (5)
	(c)	If a single mode fibre has a step index of 0.03, the core refractive index 1.45 at the cut off wavelength 1300 nm, then calculate the core radius.	is (5)
3.	(a)	Explain the function of each block with a help of neat block diagram of digital optical fibre communication system	f a (5)
	(b)	What are the principle requirements of a good conducts design?	(5)
	(c)	A single mode fibre operating at the wavelength of 1.3 μ m is found to have a total material dispersion of 2.81 ns and a total waveguide dispersion 0.495 ns. Determine the received pulse width and approximate bit rate the filter if the transmitted pulse has a width of 0.5 ns.	of

4.	(a)	What power is radiated by an LED if its quantum efficiency is 3% and peak wavelength is 670 nm?	the (5),
	(b)	Derive the expression for lasing and threshold condition.	(5)
	(c)	Explain about avalanche photo diode	(5)
5.	(a)	A photo diode has quantum efficiency of 65 %. When photons of energing 1.5 \times 10 ⁻¹⁹ J are incident on it? (i) What is the wavelength of the photodiode? (ii) Calculate the incident optical power required to obtain a photocurrent of 2.5 μ A, when the photodiode is operating as describabove.	oto
	(b)	What is LASER diode? Compare its performance with that of LED.	(5)
	(c)	A practical surface LED has 50 μ m diameter emitting area and operates peak modulation current of 100 mA. What is BW of GaAL AS LED having 2.0 μ m active area thickness assume B _r /10 ⁻¹⁰ cm ³ /s, $\delta\delta$ = 10 ⁴ cm/sec. BINA CHOWDHURY CENTRAL LIBRARY (GIMT & GIPS)	g at (5)
6.	(a)	What is WDM? Explain the features of WDM. Azara, Hatkhowapara Guwahati - 781017	(5)
	(b)	Briefly discuss 2 × 2 passive optical coupler.	(5)
	(c)	Design an optical fiber link for transmitting 15 Mb/sec of data for a dista of 4 km with BER of 10^{-9}	nce (5)
7.	(a)	Write short notes on error control in digital link.	(5)
	(b)	What is optical circulator? Explain in detail.	(5)
	(c)	Explain the construction and applications of dielectric thin film filter.	(5)