Total No. of printed pages = 4								
ME 181405								
Roll No. of candidate								
BINA CHOWDHURY CENTRAL LIBRARY (GIMT & GIPS)								
			2023	Azara, Hatkhowapara Guwahati - 781017				
	B.Tech. 4th Semester End-Term Examination							
		MECHA	NICS OF MA	ATERIALS				
		New Regulation (w.e.	.f. 2017-18) &	New Syllabus (2018-19)				
Full Ma	arks –	70		Time - Three hours				
	Т	ho firmura in the	. 1					
	1	ne figures in the margi	n indicate ful	l marks for the questions.				
		Answer Question	No. 1 and any	four from the rest.				
1. Se	lect th	ne correct answer:		$(10\times 1=10)$				
(i)	On	a principal plane, the	value of shear	stress is				
	(a)	zero	(b)	equal to principal stress				
	(c)	twice the principal st	ress (d)	half of principal stress				
(ii)	Def	lection of a cantilever	beam of lengt	h L under load W at the free end is				
		en by						
	(a)	$\frac{WL^3}{3EI}$	(b)	$rac{WL^3}{EI}$				
	(c)	$\frac{WL^3}{8EI}$	(d)	$\frac{WL^3}{48EI}$				
(iii	(iii) Energy stored in a unit volume of an elastic body is called							
	(a)	proof resilience	(b)	modulus of resilience				
	(c)	strain energy	(d)	none of the above				
(iv)	The	strength of a beam is	lirectly propo	rtional to its				
	(a)	Length	(b)	Width				
	(c)	Moment if Inertia	(d)	All of the above				

(v)	The	The angle of helix in a practical close coiled spring is					
	(a)	nearly zero	(b)	about 15°			
	(c)	10° to 15°	(d)	none of the above			
(vi)		orque transmitted by a shaft of ar stress induced is	of 10 cm diameter is 50000 Nm, Maximum				
	(a)	260.50 MPa	(b)	254.78 MPa			
	(c)	300.45 MPa	(d)	340.38 MPa			
(vii)		The hoop stress in a thin cylinder of diameter D , length Z and thickness t when subjected to an internal pressure p is equal to					
	(a)	pD/4t	(b)	pD/2t			
	(c)	2pD/t	(d)	4pD/t			
(viii) A higher value of flexural rigidity is indicative of							
	(a)	Higher stiffness and lower deflection INA CHOWDHURY CENTRAL LIBRARY					
	(b)	Ameri Mathouspara					
	(c)						
	(d)	None of the above					
(ix)	If bending moment induced in a rectangular cross-sectional bar of widt 5 cm and height 10 cm is 10 kNm, maximum induced bending stress is						
	(a)	120 MP	(b)	125 MP			
	(c)	130 MP	(d)	150 MP			
(x)		Maximum bending moment for a simply supported beam of span L and central load W					
	(a)	WL	(b)	WL/2			
	(c)	WL/4	(d)	WL/8			
(a)	How the state of stress at a point in space can be represented? What is principal stress and principal plane?						
(b)	Differentiate between the hydrostatic (spherical) and deviatoric (pure shear) state of a stress tensor. What is the effect of these two parts of a stress tensor on a body?						
(c)	Find graphically from Mohr's circle the principal stresses and the maximum shear stress for the plane stress case $\sigma_x = 500 \ MPa$, $\sigma_y = -800 \ MPa$						
	$\tau_{xy} = -300 MPa$. Check your answer analytically. Find from Mohr						

(4+3+8)

the stresses on a plane inclined at 22.5° to the given plan.

- 3. (a) What is strain? Explain different types of strains with diagrams.
 - (b) The displacement field at a point is given below. Calculate the strain tensor.

- (c) In a 3-element Delta Rosette, the strain readings are 1000, 720 and 600 respectively. Find the principal strains. (4+6+5)
- 4. (a) Deduce the expressions for stiffness and deflection for a closed coil helical spring.
 - (b) Define composite spring and its types.
 - (c) The stiffness of a closed coil helical spring is 1.5 N/mm under a maximum load of 60 N. The maximum shear stress in the spring is 125 N/mm² and its solid length is 5 cm. Find the diameters of the wire, the spring and the number of coils/turns, $G = 4.5 \times 104 \ N/mm^2$. (5+4+6)
- 5. (a) What is equivalent bending moment and equivalent twisting moment for a rotating shaft subjected to combined bending and torsion? Deduce the expressions for equivalent bending moment and equivalent twistingmoment.
 - (b) Deduce the expressions for equivalent bending moment and equivalent twisting moment for a rotating staff.
 - (c) A solid circular shaft 0.10 m diameter is subjected to a bending moment M and twisting moment T. The maximum value of combined direct stress is $10^6 N/m^2$. If the bending stress due to M is equal to shear stress due to T, calculate M and T. (5+5+5)
- 6. (a) Deduce the Curvature-Moment relation for beams.
 - (b) Calculate the maximum deflection and maximum slope for a cantilever beam with a point load W at the free end.
 - (c) Write a note on Castigliano's Theorem.

(4+8+3)

- 7. (a) What kind of stresses are found in pressure vessels through which fluid is flowing under pressure? Explain with diagrams. What is shrunk cylinders and what is its advantage?
 - (b) The maximum permissible tensile stress in a cylinder of internal diameter 80 mm is 60 MN/m². Calculate the thickness needed for the cylinder to withstand an internal pressure of 12 MN/m².
 - (c) Discuss curved beams with examples How they are analysed? (6+6+3)

 (GIMT & GIPS)

 Azara, Hatkhowapara

Guwahati - 781017

Total No. of printed pages = 4							
ME 181405							
Roll No. of candidate							
BINA CHOWDHURY CENTRAL LIBRARY (GIMT & GIPS)							
1			2023	Azara, Hatkhowapara Guwahati – 781017			
	B.Tech. 4th Semester End-Term Examination						
		MECHA	NICS OF MA	TERIALS			
		New Regulation (w.e	.f. 2017-18) &	New Syllabus (2018-19)			
Full M	arks –	70		Time - Three hours			
	Т	he figures in the margi	in indicate ful	l marks for the questions.			
		Answer Question	No. 1 and any	four from the rest.			
1. Se	elect th	ne correct answer :		$(10\times 1=10)$			
(i)	On	a principal plane, the	value of shear	stress is			
	(a)	zero	(b)	equal to principal stress			
	(c)	twice the principal st	ress (d)	half of principal stress			
(ii)) Def	lection of a cantilever	beam of lengt	h L under load W at the free end is			
		en by					
	(a)	$\frac{WL^3}{3EI}$	(b)	$rac{WL^3}{EI}$			
	(c)	$\frac{WL^3}{8EI}$	(d)	$\frac{WL^3}{48EI}$			
(iii	(iii) Energy stored in a unit volume of an elastic body is called						
	(a)	proof resilience	(b)	modulus of resilience			
	(c)	strain energy	(d)	none of the above			
(iv)	(iv) The strength of a beam is directly proportional to its						
	(a)	Length	(b)	Width			
	(c)	Moment if Inertia	(d)	All of the above			