Total No. of printed pages = 3 BCA 171202 30/6/23 Roll No. of candidate BINA CHOWDHURY CENTRAL LIBRARY (GIMT & GIPS) 2023 Azara, Hatkhowapara Guwahati - 781017 B.C.A. 2nd Semester End-Term Examination MATHEMATICS - II Full Marks - 70 Time - Three hours The figures in the margin indicate full marks for the questions. Answer question No. 1 and any four from the rest. 1. Choose the correct answer: $(10 \times 1 = 10)$ Which of the following is not a null set? (a) $\{x: x \neq x\}$ (b) (c) the set of natural number less than 1 (ii) Let A be a finite set having m elements, and B be a finite set having nelements. The number of relations from A to B is (a) (b) mnm+n 2^{m+n} 2mn (c) (d) (iii) If $A \subseteq B$, then $A \cup B = B$ (a) $A \cup B = A$ (b) (c) $A \cup B \subseteq A$ None of these (d) (iv) $^{10}P_{9} =$ (b) 10 (a) 1

10!

9!

(d)

(c)

10!

				× 200	
(v)	nC_r				
	(a)	$\frac{n!}{(n-r)!}$	(b)	$\frac{n!}{r!(n-r)!}$	
	(c)	$\frac{(n-r)!}{r!}$	(d)	$\frac{n!r!}{(n-r)!}$	
(vi)	ri) The common difference of the series with terms 1, -3, -7, -11, is				
	(a)	-2	(b)	2	
	(c)	-4	(d)	4	
(vii)	If the series $u_1 + u_2 + u_3 + + u_n +$ is convergent, then				
	(a)	$\underset{n\to\infty}{Lt} u_n = 0$	(b)	$\underset{n\to\infty}{Lt} u_n = 1$	
	(c)	$\underset{n\to\infty}{Lt} u_n < 1$	(d)	$\underset{n\to\infty}{Lt} u_n > 1$	
(viii) A vertex is called a pendant vertex if the degree of the vertex is					
	(a)	0	(b)	1	
	(c)	2	(d)	3	
(ix)	x) A complete graph with 5 vertices has — edges.				
	(a)	5	(b)	7	
	(c)	10	(d)	12	
(x)	Whi	ch of the following is not a sin			
	(a)	$\{\phi\}$	(b)	${x: x+10=10}$	
	(c)	$\left\{x: x^2 = 9\right\}$	(d)	the set of even but prime number	S
(a)	Let A, B be two sets. Prove that				(8)
	(i)	(i) $(A \cup B)^C = A^C \cap B^C$ BINA CHOWDH Y CELLIDAR LIBRARY (GINT & GIPS) Azara Chikhowapara			
	(ii) $(A \cap B)^C = A^C \cup B^C$ Guy at - 201017				
(b)	If $A \subseteq B$, $B \subseteq C$ prove that $A \subseteq C$.				(3)
(c)	Prove with the help of mathematical induction, that				(4)
	$1+3+5++(2n-1)=n^2$				
(a)	Prove that:				(6)

3.

(i) $A \cap \varphi = \varphi$ (ii) $A \cup U = U$

2.

(b) Let $A = \{3, 4, 5\}$ and $R = \{(3, 4), (4, 3), (5, 4), (5, 3)\}$ Is the relation R transitive? Explain. (3)Prove that $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$. (6)Determine the value of (4)4. (a) (i) 9P_3 (ii) ${}^{10}C_6$ Determine the value of n if (5)(b) $3 \times {}^{n}P_{4} = 7 \times {}^{n-1}P_{4}.$ How many 6 digit numbers can be formed from the digits 0, 1, 2, 3, 4, 5, 6, 7 (c) if no digit is repeated? (6)(a) A committee of 5 people is to be chosen from a group of 6 men and 4 women. 5. How many committees are possible if there are to be 3 men and 2 women? (6)BINA CHOWDHURY CENTRAL LIBRARY (GIMT & GIPS) (6)(b) Show that Azara, Hatkhowapara Guwahati - 781017 ${}^{n}C_{r} + {}^{n}C_{r-1} = {}^{n+1}C_{r}$. Where $n \ge r \ge 1$ and n and r are natural numbers. How many arrangement of the letters of the word REMAND are possible if (c) (3)there are no restriction? (2)Give an example of a group containing a loop and parallel edges. 6. (a) State and prove the Handshaking theorem. (6)(b) Prove, in a graph that the number of vertices of odd degree is even. (7)(c) A graph contains 35 edges, 4 vertices are of degree 5 each, 5 vertices are of 7. degree 4 each. 4 vertices are of degree 3 each, and the remaining vertices are of degree 2 each. Find the total number of vertices. Also find the number (6)of vertices with degree 2. Let G be a simple graph with n vertices. Show that a degree of a vertex of (4) G cannot exceed (n-1).

Give an example of a graph which is Hamiltonian as well as Eulerian.

(5)