15/1/29

		· ·				
Enrolment Number						

Total No. of printed pages = 01

Winter, 2024 Bina China San Library

Winter, 2024 Girijehan Lu

Hatkhowapana Azara Ghe 17

M. Pharm 2nd Semester Examination

ADVANCED SPECTRAL ANALYSIS

Course Code: MPC201T

Full Marks - 75

Time - 03 hours

The figure in the margin indicates full marks for the questions.

A. Answer all (30 words)

 $2 \times 10 = 20$

- 1. Using Wodward-Fieser rule calculate the λmax of para-amino phenol.
- 2. Mention the IR range for C=O (Str) and O-H (Str).
- 3. Mention the advantages of 2D NMR over 1D NMR.
- 4. Explain about M+1 and M+2 peaks found in mass spectrometry.
- 5. Mention why TMS is taken as standard in NMR.
- 6. Enlist the basic difference between DSC and TGA.
- 7. Define Chromophore with suitable examples.
- 8. With example state the difference between emission and absorption spectroscopy.
- 9. Mention the isotopes generally used in radioimmunoassay.
- 10. Explain the difference between flash chromatography and HPLC.

B. Answer any seven (100 words)

5×7=35

- 1. Write a note on Woodward-Fieser rule.
- 2. Write a note on the vibrations of IR Spectroscopy.
- 3. Explain about NOSY and COSY with their application.
- 4. Explain about Mc. Lafferty rearrangement.
- 5. Write a note on HPTLC.
- 6. Draw the probable IR spectrum of acetyl salicylic acid with special emphasis on the functional group region.
- 7. Write a note on coupling in NMR.
- 8. Explain the principle of radioimmunoassay.
- 9. Taking one example, explain about any of the 2D NMR experiment.

C. Answer any two (200 words)

 $10 \times 2 = 20$

- 1. Explain the principle, instrumentation and working of NMR.
- 2. Define immunoassay. Explain the different types of immunoassay techniques. Enlist some applications of ELISA.
- 3. Explain the working of a deflection type mass spectrometer.