Enrolment Number	

Total No. of printed pages = 03

Monsoon, 2024

B. Pharm 3rd Semester Examination

Physical Pharmaceutics I - Theory

Course Code: BP302T

Full Marks - 75

Time - 3 hours

The figure in the margin indicates full marks for the questions.

1. Answer all 20 questions.

 $1 \times 20 = 20$

- a. A pure solvent "X" rises 1.24 cm in a capillary rise apparatus at room temperature. Capillary tube has a radius of 4.6×10^{-2} m and the density of "X" is 0.781 g.cm³. Surface tension of "X" will be –
 - 1. $2.185 \times 10^{-2} \text{ N/m}$
 - 2. 2.185×10⁻² J/m
 - 3. 3.287×10⁻² N/m
 - 4. 2.185×10⁻⁴ N/m
- b. For an aqueous solution of a surfactant, how does the surface free energy change with increasing surfactant concentration?
 - 1. It decreases and then plateaus after reaching the critical micelle concentration (CMC).
 - 2. It increases linearly with concentration due to enhanced intermolecular forces.
 - 3. It remains constant until the CMC is reached.
 - 4. It increases initially and then decreases after reaching CMC.
- c. If surfactant A and B have HLB value of 4.3 and 15 respectively than calculated RHLB value for 12 the required parts for surfactant A will be-
 - 1. 3
 - 2. 7.7
 - 3. 6
 - 4. 5
- d. If light is passing from liquid through glass than consider the right statement for incident angle i and refracted angle r -
 - 1. i>r
 - 2. r>i
 - .3. r=i
 - 4. r>>i
- e. Which of the following statements correctly describes surface free energy?
 - 1. Surface free energy is always a positive quantity due to the cohesive forces among molecules.
 - 2. Surface free energy is defined as the work required to increase the surface area of a liquid by a
 - 3. Surface free energy decreases with temperature due to a decrease in intermolecular attraction.
 - 4. Surface free energy is independent of the phase in which the substance exists.
- f. Which factor most significantly influences the contact angle between a solid and a liquid?
 - 1. The density of the liquid
 - 2. The molecular weight of the solid

- 3. Surface roughness and chemical composition of the solid
- 4. The molar volume of the liquid
- g. If a solid have same refractive index value and electrical conductivity value than it can be called as-
 - 1. Anisotropic
 - 2. Isotropic
 - 3. Both 1 and 2
- h. Determine the fusion temperature in degree Celsius for benzene with melting point 278.5 K.
 - 1. 5.35
 - 2. 7
 - 3. 37.5
 - 4. 13.2
- i. Degree of freedom at triple point for water is-
 - 1. 0
 - 2. 1
 - 3. 2
- j. In the context of solubility, which of the following correctly describes the role of solvation?
 - 1. It increases the melting point of solutes in solvents.
 - 2. It involves the interaction between solute and solvent molecules to stabilize the dissolved species.
 - 3. It is the process by which gas solubility in liquids decreases with increasing temperature.
 - 4. It defines the equilibrium between miscible liquids in Raoult's law.
- k. When applying the Distribution Law, why does association or dissociation of solutes in one phase lead to deviations?
 - 1. Because the equilibrium constant becomes undefined
 - 2. Because the concentration ratio no longer reflects the true distribution coefficient
 - 3. Because Raoult's law is invalidated under these conditions
 - 4. Because the critical solution temperature is altered
- 1. Which factor does NOT significantly affect the solubility of a gas in a liquid?
 - 1. Temperature
 - 2. Nature of the solvent
 - 3. Critical solution temperature
 - 4. Pressure above the liquid
- m. What is the primary reason polymorphism impacts drug efficacy and stability?
 - 1. It alters the refractive index of the drug molecules.
 - 2. Different polymorphic forms exhibit variations in melting point, solubility, and bioavailability.
 - 3. Polymorphic drugs cannot exist in an amorphous state.
 - 4. It only affects drugs in gaseous states.
- n. Eutectic mixtures are characterized by which of the following?
 - 1. The formation of a single crystalline phase upon mixing two substances.
 - 2. A melting point lower than that of the individual components.
 - 3. Immiscibility of components at all proportions.
 - 4. The sublimation of the mixture at ambient pressure.
- o. Liquid crystals exhibit properties of both liquids and solids. Which feature is NOT typical of liquid crystals?
 - 1. High degree of molecular order
 - 2. Ability to flow like a liquid
 - 3. Sharp melting point similar to crystalline solids
 - 4. Sensitivity to changes in temperature and pressure

- p. The stability of aerosols is most affected by which factor?
 - 1. Vapor pressure of the propellant
 - 2. Polymorphic state of the active ingredient
 - 3. Dielectric constant of the container material
 - 4. Relative humidity of the environment
- q. The buffer capacity is defined as:
 - 1. The pH range over which the buffer can maintain its capacity.
 - 2. The amount of acid or base required to change the pH of 1 liter of buffer by 1 unit.
 - 3. The total concentration of buffer components in a solution.
 - 4. The ratio of weak acid to its conjugate base in the buffer.
- r. Which isotonic solution is most frequently used for intravenous administration?
 - 1. Phosphate-buffered saline
 - 2. 0.9% sodium chloride solution
 - 3. Ringer's lactate solution
 - 4. Glucose 5% solution
- s. The thermodynamic stability constant of a complex is primarily influenced by which factor?
 - 1. Concentration of the components
 - 2. Strength of intermolecular interactions
 - 3. Method of analysis used
 - 4. pH of the external environment
- t. Which type of crystalline structure is typically associated with stronger drug-protein binding?
 - 1. Amorphous
 - 2. Hydrate
 - 3. Polymorphic
 - 4. Co-crystalline
- 2. Answer any seven questions from below.

 $-5 \times 7 = 35$

- a. Explain the Raoult's law in terms of solubility.
- b. Explain liquid crystals along with their biological implication.
- c. Solve surface free energy with proper equation.
- d. Explain the formation of inorganic metal complexes.
- e. Explain the concept of polymorphism in terms of stability and boiling point.
- f. Explain dissociation constant mathematically for a weak acid.
- g. Sketch buffer equation for a weak base.
- h. Explain isotonicity. Explain the methods for adjustment of isotonicity.
- i. Explain the mechanisms of solute-solvent interactions and discuss how solvation and association influence the solubility of drugs.
- 3. Answer any two questions from below.

 $2 \times 10 = 20$

- a. Explain the adsorption isotherms based on Freundlich and Langmuir along with the variations.
- b. Explain the kinetics of protein binding with appropriate graphical plot.
- c. Explain various factors influencing the solubility of solids.