Enrolment Number					

Total No. of printed pages = 03

Monsoon, 2023

B.C.A Semester Examinations

DIGITAL LOGIC

Course Code: BCA23102T

Full Marks - 60 Time - 2 ½ hours

The figure in the margin indicates full marks for the questions.

Part A

Answer ALL questions Multiple Choice(10 x 1mark = 10marks)

- 1. a) Largest Unsigned Binary number can be stored in a 8 bit register is 127
 - (i)
 - (ii) 128
 - 255 (iii)
 - (iv) 256
 - b) In Boolean algebra if A+1=1 then the value of A is
 - (i) 1
 - (ii) 0
 - 1 or 0 (iii)
 - None of the these (iv)
 - c) The even parity bit for 1011 1011 is
 - (i) 1
 - (ii) 0
 - 1 or 0 (iii)
 - None of the these (iv)
 - d) The gray code for 1101
 - 1011 (i)
 - (ii) 1010
 - 0010 (iii)
 - (iv) None of these
 - e) if $F1(ABC)=\sum (0,1,2,3)$ and $F2(ABC)=\sum (4,5,6,7)$ then
 - (i) F1(ABC)=F2(ABC)
 - F1(ABC)+F2(ABC)=1(ii)
 - (iii) $\{F1(ABC)\}/=\{F2(ABC)\}/$
 - None of the these (iv)
 - f) Which is not an Universal gate
 - (i) NOR gate
 - NAND gate (ii)
 - (iii) EXOR gate

M 054/060

- (iv) All of these
- g) Which is a register
 - (i) MAR
 - (ii) Program Counter
 - (iii) Accumulator
 - (iv) All of these
- h) To address 1000 locations we need an address size of
 - (i) 8 bits
 - (ii) 9 bits
 - (iii) 10 bits
 - (iv) 11 bits
- i) Random Access Memory is a
 - (i) Volatile memory
 - (ii) Semiconductor memory
 - (iii) Main memory
 - (iv) All of these
- i) The number -7 in -8421 code is
 - (i) 1001
 - (ii) 1100
 - (iii) 1010
 - (iv) 1011

Part B

Answer ANY FOUR questions (4x 5 mark = 20 marks)

- 2. Convert
 - (i) Decimal number -128.50 into binary
 - (ii) Hexadecimal number 1A1B in to Octal
- 3. Add
 - (i) Binary numbers 1011, 1001, 1111, 1100
 - (ii) BCD the numbers 0111 and 0101
- 4. Simplify using 2's complement
 - (i) -12 + 13
 - (ii) -12- 13
- 5. Draw the NOR-NOR Circuit for the following:

$$F(ABC) = AB+BC+CA$$

6. Represent the following functions using a Decoder and OR gates

$$F1(xyz) = xyz'$$

$$F2(xyz) = \sum (5,6,7)$$

7. What is the problem of SR flip – flop? How it is solved using D Flip flop? Explain with diagrams.

Part C

Answer ANY TWO questions $(2 \times 10 \text{ mark} = 20 \text{ marks})$

- 8. a) Reduce the Given Boolean function using k-map F(WXYZ) = F(0,1,2,4,6,8,9,10,12,14)
 - b) Design a counter for the following outputs using T flip flop 1,3,4,5,7 and repeat
- 9. a) Draw a 8X1 multiplexer and explain its working principle.
 - b) Draw the excitation table for SR flip flop and explain.
- 10 a) What is Master Slave flip flop. Draw the diagram for JK master slave flip flip and explain it.
 - b) Represent -135 in IEEE 32 bit floating point representation.

Part D

Short Notes

(2 x5 mark = 10 marks)

- 11. Write any two:
 - a) Full Adder and its working principle
 - b) Binary Cell and its working principle
 - c) Postulates of Boolean algebra
 - d) Designing a 4X4 ROM
