Emonient (vanior)	Enrolment	Number										
-------------------	-----------	--------	--	--	--	--	--	--	--	--	--	--

Total No. of printed pages = 04

Monsoon, 2023

B.Tech Semester Examinations

Basic Electrical Engineering

Course Code: BEL23101T

Full Marks –50 Time –2 hours

The figure in the margin indicates full marks for the questions.

Part A
Answer ALL questions
Multiple Choice (10 x 1 mark = 10 marks)

- a) Which of the following elements is unilateral
 (i) diode
 (ii) resistor
 (iii) conductor
 (iv) inductor
 - b) Circuit elements containing internal energy sources are called
 - (i) active elements (ii) passive elements (iii) unilateral elements (iv) bilateral elements
 - c) In applying Thevenin's theorem independent active sources are eliminated by making the
 - (i) voltage sources open circuited and current sources short circuited
 - (ii) current sources open circuited and voltage sources short circuited
 - (iii) both the sources open circuited
 - (iv) both the sources short circuited
 - d) Series combination of an ideal voltage source and current source behaves like
 - (i) a voltage source (ii) a current source (iii) neither voltage nor current source (iv) either voltage or current source
 - e) Negative power of a two terminal network implies that the element is
 - (i) receiving energy (ii) supplying energy
 - (iii) neither receiving nor supplying energy (iv) either receiving or supplying energy
 - f) Maximum emf is generated in a rectangular coil rotating in a uniform magnetic field when the plane of the coil is
 - (i) horizontal and parallel to the line of flux (ii) horizontal ar
 - (ii) horizontal and perpendicular to the line of flux
 - (iii) vertical and parallel to the line of flux (iv) vertical and perpendicular to the line of flux
 - g) Form factor is defined as the ratio of

M 072/040

(i) maximum value to rms value

- (ii) rms value to average value
- (iii) maximumvalue to average value
- (iv) rms value to maximum value

- h)Susceptance is the
- (i) realpart of admittance

(ii) imaginary part of admittance

(iii) real part of conductance

- (iv) imaginary part of conductance
- i) In a star connected balanced three phase system the phase difference between the line and phase voltages is
- (i) 90°
- (ii) 30°
- (iii) 60°
- (iv)120°

- j) Deflecting torque is produced by
- (i) magnetic effect
- (ii) damping effect
- (iii) thermal effect
- (iv) electrostatic effect

Part B Answer ANY FOUR questions (4 x 5mark = 20 marks) (Max.100 words each question)

2. Find the potential difference between the points x and y in the following network

3. Find the current through the 10 Ω resistor of the network shown in the following figure using mesh analysis

4. Find the value of current flowing through 8 Ohm resistor using Thevenins Theorem

(5)

5. Find the rms value of the following waveform

6.Explain the construction and working principle of a PMMC type instrument . (5)

7. Deduce the relationship between the line and phase values of voltages in a 3 phase star connected system. (5)

Part C Answer ANY TWO questions (2 x 10mark = 20 marks) (Max.200 words each question)

8. a)In a circuit four currents are indicated as follows.

$$i_1 = 5 \sin \omega t$$
 $i_2 = 10 \sin(\omega t - 30^\circ)$ $i_3 = 5 \cos(\omega t - 30^\circ)$ $i_4 = -10 \sin(\omega t + 45^\circ)$
These currents are meeting at a point in the circuit. Find the resultant current. (3)

- b) Three equal impedances, each of $(8-j6)\Omega$, are connected in delta. This is further connected to a 230V, 50 Hz, three phase supply. Calculate (a) power factor (b) line current and (c) reactive power. (3)
 - c) Prepare a comparison table between 3 phase star and delta connected systems. (4)
- 9. a)Determine the equivalent impedance, total current drawn, power factor and power consumed by the following circuit. (Supply Voltage is 100V, 50 Hz)

(6)

b)An alternating current is given by $i = 14.14 \sin 377 t$.

Find (i) rms value of the current, (ii) frequency, (iii) instantaneous value of the current when t = 3 ms, and (iv) time taken by the current to reach 10 A for first time after passing through zero. (4)

10. a)State and prove maximum power transfer theorem
b)Find the supply current I and the currents I₁ and I₂ in the parallel branches

(3)
